
OpenRefactory/C
An Infrastructure for Developing Program Transformations for C Programs

Munawar Hafiz
Auburn University

munawar@auburn.edu

Jeffrey Overbey
National Center for Supercomputing Applications

overbey2@illinois.edu

Abstract
This demonstration will provide an overview of OpenRefac-
tory/C, an infrastructure for developing source-level pro-
gram transformations for C programs. OpenRefactory/C is
platform independent; however, the demonstration will be
on the Eclipse platform. We will highlight the features of the
infrastructure, outline the problems it solves, show the pro-
gram analyses support that we have built for this infrastruc-
ture, and show traditional refactorings as well as advanced
security-oriented program transformations that cannot be de-
veloped in any other C IDEs.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement

General Terms Languages, Security

Keywords Program Transformation, C, Preprocessor

1. The Problem
IDEs for modern languages, e.g., Java and C#, have support
for maintenance and code evolution using automated refac-
torings. C, in spite of its popularity, has IDEs with a lim-
ited portfolio of program transformations, with limited static
analysis capabilities, limited scalability, and limited applica-
bility to real-world programs—particularly ones that make
extensive use of the C preprocessor.

There are two major challenges that make it hard to build
practical tools for transforming C programs.
(1) C programming IDEs ignore multiple configurations of

C preprocessor because of its complexity; most IDEs
provide program analysis and transformation support
based on a single configuration. The resulting program
transformations are inaccurate.

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

(2) IDEs for C do not support sophisticated static analyses
even on preprocessed C code, e.g., Eclipse CDT only
supports name binding, type analysis and limited con-
trol flow analysis. Without data flow analysis, it is im-
possible to implement any non-trivial program trans-
formation. Preprocessors and multiple configurations
make static analysis even more complicated.

2. The Demonstration
Existing tools have attempted to repurpose compiler- or
IDE-based language infrastructures for refactoring. In con-
trast, OpenRefactory/C was built, from the beginning, with
the goal of correctly refactoring C. It is based on a well-
established infrastructural and API design, and it is being
designed to support a sophisticated suite of static analyses
while respecting the full semantics of the C preprocessor.

The demonstration will contain these parts.
(1) Problem explanation, and an illustration of the limita-

tions of refactorings in current IDEs for C.
(2) Basic features of OpenRefactory/C highlighting the

program analyses supported by the infrastructure.
(3) Advanced security-oriented program transformations [3,

4] that prevent various security vulnerabilities, most
importantly integer overflow and buffer overflow vul-
nerabilities, that are implemented on OpenRefactory/C.

(4) The big picture and the plans ahead.

3. Features of OpenRefactory/C
The motivation behind OpenRefactory/C is our work on
security-oriented program transformations [3]—complex
transformations, that cannot be implemented by existing in-
frastructures with limited support for sophisticated analyses.

Our current infrastructure supports name binding analy-
sis, type analysis, control flow analysis and static call-graph
analysis. Name binding analysis information is encoded in
the abstract syntax tree (AST). Any AST node representing
a name reference can be queried to return the correspond-
ing declaration node. Control flow and type information are
computed as a query to the AST. Control flow analysis fol-
lows Morgenthaler’s [7] algorithm of AST nodes dynami-
cally computing which other AST nodes constitute its con-



trol flow successors and predecessors. Type analysis uses the
results of name binding analysis to compute types of vari-
ables and functions. Call graph analysis uses the results of
both the name binding and control flow analyses to annotate
the AST with call graph edges. We have been working on in-
tegrating pointer analysis, specifically Anderson’s points-to
analysis [2], by interfacing with a points-to analysis imple-
mentation [6] based on Hardekopf’s [5] algorithm.

4. Under the Hood
OpenRefactory/C is a plug-in for OpenRefactory, a frame-
work for building source-level program analyses and trans-
formations. OpenRefactory is so named because it is de-
signed to be extensible both in terms of the refactorings it
supports as well as the languages it can refactor. OpenRefac-
tory/C adds C language support to OpenRefactory.

The refactoring infrastructure in OpenRefactory/C is
based on the design of Photran [1], an Eclipse-based inte-
grated development environment and refactoring tool for
Fortran. Photran’s refactoring infrastructure and source
rewriting APIs were refined over the course of several years:
Photran 8 contains 39 refactorings for Fortran programs,
many of which were developed by third-party contributors.
Thus, Photran’s refactoring API has proven to be both gen-
eral and reasonably easy for new contributors to learn, mak-
ing it a good starting point for a C refactoring tool.

Like Photran, OpenRefactory/C’s internal program rep-
resentation is a rewritable abstract syntax tree generated by
Ludwig [8]. The syntax tree is augmented with preproces-
sor information as described by Overbey, Michelotti, and
Johnson [10]. Semantic checks are based on a differential
precondition checking infrastructure [9]. Our infrastructure
currently handles a single preprocessor configuration, i.e.,
it assumes that C Preprocessor macros take only one, fixed
value; thus, it ignores some code in #ifdef regions.

Photran is based on Eclipse, but most of its underlying in-
frastructure is platform-independent. Our demonstration will
also be based on Eclipse, but the infrastructure is platform-
independent; it could be plugged in to other IDEs such as
Visual Studio, or Vim.

5. Future Plans
The C preprocessor poses a particular challenge because
most C programs use multiple preprocessor configurations:
Through the use of macros and #ifdef directives, program-
mers vary what code is included in the executable, e.g., in
debug vs. release configurations, x86 vs. x86 64, etc.

Almost all existing C program transformation tools present
in IDEs work on a single configuration of preprocessed code.
While this is normal behavior for a compiler, and generally
good enough for an IDE, it is insufficient for a refactoring
tool. For example, a tool that applies a rename refactoring to
a variable in one configuration but ignores other configura-
tions may change the behavior of a program.

OpenRefactory/C will eventually support multiple pre-
processor configurations. This means that it will be able to
transform un-preprocessed source code, exactly as the pro-
grammer sees it, and will analyze and transform code with
respect to all possible macro configurations.

References
[1] Photran - An Integrated Development Environment and

Refactoring Tool for Fortran. http://www.eclipse.org/photran/.

[2] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994. (DIKU report 94/19).

[3] M. Hafiz. Security On Demand. PhD thesis, University of
Illinois at Urbana-Champaign, 2010.

[4] M. Hafiz. An ‘Explicit Type Enforcement’ program transfor-
mation tool for preventing integer vulnerabiliites. In Compan-
ion of OOPSLA ’11, pages 21–22. ACM, 2011.

[5] B. Hardekopf and C. Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code. In
Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation, 2007. ACM, 2007.

[6] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel
inclusion-based points-to analysis. In OOPSLA, 2010.

[7] J. Morgenthaler. Static Analysis for a Software Transforma-
tion Tool. PhD thesis, UCSD, 1997.

[8] J. Overbey and R. Johnson. Generating rewritable abstract
syntax trees. In Software Language Engineering: First In-
ternational Conference, SLE 2008. Revised Selected Papers,
volume 5452 of Lecture Notes in Computer Science, pages
114–133, Berlin, Heidelberg, 2009. Springer-Verlag.

[9] J. Overbey and R. Johnson. Differential precondition check-
ing: A lightweight, reusable analysis for refactoring tools. In
26th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2011), 2011. IEEE, 2011.

[10] J. Overbey, M. D. Michelotti, and R. Johnson. Toward a
language-agnostic, syntactic representation for preprocessed
code. In WRT ’09: Proceedings of the 3rd Workshop on
Refactoring Tools.

Presenter Biography. Munawar Hafiz is an Assistant Pro-
fessor at Auburn University, AL. He leads the program
analysis and program transformation aspects of OpenRefac-
tory/C, especially how complex program transformations
can be built on this infrastructure [4]. Munawar has pre-
sented his research in various forms at previous SPLASHes,
e.g., as part of a tutorial, as a poster, and as a finalist project
in ACM student research competition.

Jeffrey Overbey, currently a postdoc at National Center
for Supercomputing Applications (NCSA), is the chief de-
signer of OpenRefactory/C infrastructure. He is co-lead of
Photran [1], an open source project hosted by the Eclipse
Foundation. It is widely used by the scientific community
(approximately 20,000 users worldwide). Photran influences
many design decisions in OpenRefactory/C.


