
HTTP Methods for Web Services
Paul Adamczyk, Munawar Hafiz and Ralph E. Johnson

Department of Computer Science
University of Illinois

(padamczy, mhafiz, johnson)@cs.uiuc.edu

Abstract

We present a study of the 100 most popular websites showing that many features of HTTP/1.1 (specif-
ically, HTTP methods) are not implemented and configured correctly. We relate these results to the
current use of HTTP methods by Web services and speculate about the future trends.

1. Introduction

The Hypertext Transfer Protocol (HTTP) has been the cornerstone of the Web since its inception. The
current version, HTTP/1.1, includes many features meant to improve the performance of HTTP. Some
of these added features are very useful, but not all the new features are used universally. Our poster
describes how modern systems implement HTTP/1.1. We surveyed top 100 websites in the USA [1] to
see how well they comply with the standard.

HTTP is the foundation of Web services as well. While most research focuses on SOAP-based Web
services, the industry leans more towards RESTful Web services. SOAP-based Web services are defined
to use POST as the only HTTP method. We do not propose to change that; instead focus on RESTful Web
services that use only GET and POST methods. Other HTTP methods are defined for tasks seemingly
well suited for Web services, however current Web services do not use them at all. This poster discusses
the impact of the current conceptual understanding of the HTTP standard on the future of Web services,
specifically RESTful Web services.

2. Background and Experimental Results

2.1. Overview of HTTP Methods

The current definition of HTTP/1.1 [2], consists of eight methods. We have divided these methods
into three groups:
(1) Read-only methods (GET and HEAD) that do not modify the server. These are the only methods

to which all resources must respond.
(2) Write methods (POST, PUT, and DELETE) that modify the data on the server.
(3) Supporting methods (OPTIONS, TRACE, and CONNECT) that were added in version 1.1.

2.2. Related Work

We are aware of only one experimental work that is similar to ours. PRO-COW [4] studied the
compliance of Web servers with HTTP/1.1 in 1999, soon after the standard was published. This study
focused on correct implementation of the mandatory and optional HTTP features, including methods and

method headers. It tested 15 most popular websites in 1999. Our study included 10 of these websites.
The follow-up PRO-COW study from 2001 [5] included 150 websites, selected based on 3 different
services reporting the most popular sites.

2.3. Compliance Results

Most websites do not respond to the HTTP methods correctly according to the standard. See the poster
for detailed results. More detailed results are available athttp://st.cs.uiuc.edu/ ∼padamczy/
http tests-ws.html . These results provide good starting point for discussing how Web services
should use HTTP methods.

3. Relationship to Web Services

While SOAP-based Web services are designed to use POST exclusively, the RESTful Web services
should, ideally, take advantage of all HTTP methods to define better interfaces. In this section, we
explain what our test results suggest about this idea.

3.1. Supporting Methods

The OPTIONS method looks suspiciously similar to UDDI. The clients could use it to dynamically
discover what methods are supported by a resource and then select the most appropriate method to
invoke. However, the fact that only few of the websites configure this method to return unambiguous,
correct results indicates that dynamic discovery is probably not such a great idea and it’s not likely to
work for the RESTful Web services either. The OPTIONS method appears to be used mainly to “confuse
the enemy” (i.e. hackers). It returns misleading results to prevent hackers from learning the capabilities
of the system. Browsers never send the OPTIONS method to the server. Only hackers use it. Hence it is
natural to obscure the information to achieve security through obscurity.

The TRACE method appears to be more useful, because message tracing and debugging is very diffi-
cult in distributes systems, such as the Web. Yet, our results show that only few of the websites handle
this method correctly. We suspect that the reason for low compliance of both of these methods is se-
curity. Ideally, Web services should benefit from incorporating these methods, but the disappointing
compliance results make us hesitant to suggest that.

Security of RESTful Web services depends on HTTPS and the CONNECT method. The SOAP-based
Web services define standards for secure SOAP-based messaging (the WS-* standards), but no imple-
mentations of Web services based on these standards exist, because of their computational overhead. In
contrast, CONNECT is lightweight and it provides strong security guarantee. This is why that standard
is universally adopted for secure communication.

3.2. Read-only Methods

GET is the universal method of RESTful Web services. It is used to retrieve data and sometimes even
to make changes to the server. For example, some Web services use GET for updating the server data:

• Bloglines API uses GET to mark unread items as read.
• Flickr API uses GET to delete a photo set.
• del.icio.us API uses GET to delete a post from the site.

But these are drastic exceptions. Web services are diligent in using GET for read requests and POST
for write requests. Since these violations have been publicized, Flickr has replaced GET with POST in
the API specification.

Web services do not use conditional GET, because they do not use HTTP headers. Our results show
that the conditional GET is the only method whose compliance has improved significantly since the
PRO-COW experiments. This indicates that caching is an important feature. We believe that conditional
GET should be used by Web services, because it significantly improves performance via caching.

Web services do not use HEAD now. HEAD is a useful method for traditional Web applications as it
is used for retrieving metadata. This is an unimportant part of Web services and we believe that it is not
needed for Web services.

3.3. Write Methods

The RESTful Web services literature uses PUT and DELETE methods as examples that Web services
do not follow REST [3]. Existing Web services implementations do not use PUT and DELETE methods.

We have mentioned that Flickr modified the API for deleting a photo set to use POST, not GET. But
according to the HTTP standard, DELETE method would be more appropriate. The default pattern for
handling deletion by Web services is to send the POST method to a special Request-URI that includes
the word “delete.” This is not a good interpretation of the standard, because the URI identifies a resource.
Including “delete” as a part of the resource identification means that the resource is a stub for a delete
method on the server.

Considering how rarely PUT and DELETE are configured by websites, it is not likely that insistence
on having 3 methods for modifying Web services resources will lead to a widespread acceptance of this
approach. The current state of practice is likely to remain unchanged and POST will remain the only
method for writing in Web services.

4. Conclusion

The results we present confirm some well-known facts. However, we present a more complete picture
of which HTTP methods are important and why. Websites often configure all HTTP methods, but there
is a large variety of incorrect configurations. This variety shows lack of common understanding of the
concepts behind these methods. The results suggest which HTTP methods are important and should be
considered for inclusion by Web services.

References

[1] Alexa Internet. Top sites United States. 2006.
http://www.alexa.com/site/ds/top sites?cc=US&ts mode=country&lang=none .

[2] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk Nielsen, L. Masinter, P. J. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1. Internet proposed standard RFC 2616, June 1999.

[3] G. Goth. Critics say Web services need a REST.IEEE Distributed Systems Online, 5(12):1–1, Dec. 2004.
[4] B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol compliance on the Web. Technical Report 990803-05-

TM, 1999.
[5] B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol compliance on the Web — A longitudinal study. In

Proceedings of the 3rd USENIX Symposium on Internet Technologies and Systems (USITS-01), 2001.

HEADTRACE

OPTIONS/*

HTTP Methods for Web Services
Paul Adamczyk, Munawar Hafiz and Ralph E. Johnson

(padamczy, mhafiz, johnson)@cs.uiuc.edu

University of Illinois at Urbana-Champaign

http://wiki.cs.uiuc.edu/SAG

Overview
• A study of the HTTP/1.1 compliance of 100 most popular US websites.
• Most HTTP methods fail to show compliance.
• We relate these results to the current use of HTTP methods by Web services.

Software

Architecture

Group
University of Illinois

HTTP Standard
HTTP Methods

We have divided HTTP methods into three groups
1) Supporting Methods: OPTIONS, TRACE and CONNECT.
2) Read-only Methods: GET and HEAD.
3) Write Methods: POST, PUT, and DELETE.

Evolution of HTTP

Interpretation of HTTP compliance
1. Unconditional Compliance: Implement all the “must” and “should”

requirements.
2. Conditional Compliance: Implement all “must” requirements.
3. Non-compliance: Fails at least one “must” requirement.

Added CONNECTGET, HEAD, POST, PUT, DELETE,
OPTIONS, TRACE, CONNECT

RFC 2616 (HTTP/1.1)
(Obsoletes RFC 2068)

Removed LINK, UNLINKGET, HEAD, POST, PUT, DELETE,
OPTIONS, TRACE

RFC 2068 (HTTP/1.1)
(Obsoletes RFC 1945)

Added LINK, UNLINKMain: GET, HEAD, POST

Additional: PUT, DELETE, LINK, UNLINK

RFC 1945 (HTTP/1.0)

Added all methods but GET
(Methods that were not in RFC
1945 are in italics)

GET, PUT, DELETE, POST, HEAD,

CHECKIN, CHECKOUT, LINK, UNLINK,
TEXTSEARCH, SEARCH, SHOWMETHOD,
SPACEJUMP

Before HTTP/1.0

-GETInitial implementation

Change from previousSupported MethodsDescription

Experimental Setup
OPTIONS, GET, TRACE and HEAD

• Implemented an HTTP client using VisualWorks 7.1 (Smalltalk).
• The client sent HTTP requests to the home page of the top 100 US
websites, according to Alexa(http://www.alexa.com).

CONNECT
• Used Fiddler, an HTTP debugging proxy to log HTTP traffic.
• Manually checked the CONNECT requests and responses.

Comparison with Related Work

* Ref: B. Krishnamurthy and M. Arlitt. PRO-COW:Protocol compliance on the Web. Technical Report 990803-05-TM, 1999.

HTTP Compliance Test Results

Supporting Methods Read-Only Methods
OPTIONS

Write Methods
POST, PUT and DELETE
Write methods cannot be tested uniformly. So we did not test these methods.

Uncondi-
tiona l

Condi-
tiona l

Non-
compliant

0

5

10

15

20

25

30

35

40

45

50

55

60

Runtime Error

Method treated
as GET
Status OK, but
message body
indicates that
Error Code in
Response
Mis leading Allow
Header
Not Imple -
mented
Implemented OK

Compliance Type

R
es

po
ns

e
Ty

pe

Uncondi-
tiona l

Conditiona l Non-com-
pliant

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

Runtime Error

Me thod tre a te d a s
GET

S ta tus OK, but
re sponse body
include s 404
Error Co de in
Re spons e
Mis le a din g Allow
he a de r conte nt

Not Imple me nte d

Imple me nte d OK

Compliance Type

R
es

po
ns

e
 T

yp
e

Unconditiona l Conditiona l Non-compliant
0

4

8

12

16

20

24

28

32

36

40

44

Runtime Er ror

Method trea te d a s
GET

Sta tus OK, bu t
messa ge body indi-
ca te s tha t the mes-
Messa ge body not
included

Error code in
response

Not imple mente d

Imple mente d OK

Complia nce Type

R
e

s
p

o
n

s
e

 T
yp

e

CONNECT
• CONNECT is used for setting up a secure tunnel in 60 out of 100 websites.
• 40 websites send authentication information using POST, mostly without

encryption.

Unconditional Conditional Non-compliant
0

5

10

15

20

25

30

35

40

45

50

55

60
Runtime error

Error code in
response

Missing Content-
Length header

Content-Length
set to zero
Wrong Content-
Length value
Implemented OK
(exactly like GET)
Implemented OK
(same headers as
GET)

Compliance Type

R
e

sp
on

se
 T

yp
e

GET with If-Unmodified-Since Header

GET with If-Modified-Since Header

Uncondi-
tional

Conditional Non-
compliant

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Status Code 304
(a la If-Modified-
Since)

200 OK, but file not
modifie d

Imple me nte d O K –
Sta tus Code 412

HTTP P rotocol

R
e

sp
on

se
 T

yp
e

Uncondi-
tional

Condi-
tional

Non-
compliant

0

5

10

15

20

25

30

35

40

45

50

55

60

65

200 OK

Implemented OK
– S tatus Code
304

HTTP Protocol

R
es

po
ns

e
Ty

pe

Relationship to Web Services

OPTIONS is meant to dynamically discover
capabilities of a resource.
Used as a mechanism to “confuse the enemy”.
Like UDDI, it does not work.
TRACE is meant for tracing and debugging.
It is seldom used due to security concerns.
CONNECT is a lightweight alternative to Web
service standards for secure communication.
This illustrates the inefficacy of Web service
standards.

GET is used for retrieving a resource
representation.
All implementations are unconditionally compliant.
RESTful Web services misuse GET for modifying
server content.
Conditional GET is used to improve caching.
It is implemented correctly by most websites.
Web services should use it for caching.
HEAD is used for retrieving meta-data.
Not useful for Web services.

POST is used for updating data on the server.
PUT is meant for creating new resources.
DELETE is meant for deleting a resource.
In practice, POST is used for all of these tasks and
more (SOAP uses POST for everything).
RESTful Web services claim that POST, PUT and
DELETE must be used according to the HTTP
standard.
But, the current state of practice is likely to remain
unchanged.

Supporting Methods Read-Only Methods Write Methods

