
Non-compliant and Proud: A Case Study of HTTP Compliance

Paul Adamczyk, Munawar Hafiz and Ralph E. Johnson
Department of Computer Science

University of Illinois at Urbana-Champaign
{padamczy, mhafiz, rjohnson}@uiuc.edu

Abstract

We studied the most popular websites in the US and
around the world and discovered that few of them imple-
ment the HTTP standard completely. However, the servers
are capable of implementing HTTP correctly; it is the con-
figurations that are non-compliant. It is not hard to config-
ure servers correctly, so these websites are non-compliant
out of choice, not necessity.

1. Introduction

HTTP is the cornerstone of the World Wide Web. Under-
standing HTTP is important, because new Web technologies
are built on top of it. Such technologies use HTTP as the ba-
sis and extend it in many ways to create more complex and
powerful protocols. Without understanding HTTP, one runs
the risk of reinventing capabilities that are already present in
HTTP or completely misusing the protocol. Alternatively,
understanding HTTP just by reading the standard can lead
to problems, because not all of its features are widely used.
This paper examines current status of HTTP compliance.

HTTP defines eight methods for interacting with re-
sources on the Web. Most Web users are not aware of them
at all. Typical Web programmers know only of two HTTP
methods: GET and POST. These methods have visual repre-
sentations in Web browsers and they are the only two meth-
ods supported by HTML forms. GET is invoked when a
user elects to go to a URI in the address bar, when a hy-
perlink is selected, or in response to pressing a button in a
form. POST is invoked by pressing a button. Other HTTP
methods do not have any representation in the browser.

This paper presents the study of the implementation and
configuration of HTTP methods on the Web. We distinguish
the implementationof these methods in Web servers and
their configurationby websites that use these servers. We
analyze the compliance results from both perspectives.

Our results are based on the study of the 100 most pop-
ular websites in the world, the 100 most popular websites

in the USA (both according to Alexa [1]), and the websites
of the top 25 computer science departments in the USA (ac-
cording to US News [20]). While there is some overlap be-
tween the first two sets resulting in 176 unique websites, we
selected these three groups, because they represent differ-
ent flavors of popularity. The most popular websites in the
world provide social networking, search, and Web portals in
the most-used languages in the world. The US websites ad-
ditionally include many e-commerce sites. The websites of
CS departments represent the popular research institutions.

This paper makes the following contributions to the un-
derstanding of the Web:

• It presents a quantitative analysis of the state of HTTP
compliance, 2007 A.D. This study focuses on a selec-
tion of HTTP methods, headers, and algorithms defined
in the HTTP standards.

• It places the results in historical context by discussing
trends that have occurred over time, both in the defini-
tions and the implementations of the standard. Thus it
provides the basis for understanding the capabilities of
HTTP for the designers of new protocols built on it.

• It invites further studies and discussion about the state
of the Web by posing questions prompted by the results.
More detailed studies, targeting specific aspects of Web
protocols can use these findings as a start.

This paper begins with an overview of the related work
followed by the overview of our experiments. We present
experimental results, compare them to previous studies, and
discuss them from the perspective of Web servers and prox-
ies. The results show that the Web servers implement HTTP
according to the standard, but few websites are configured
according to the standard.

2. The HTTP Standard

Initial implementations of HTTP had only one method,
GET [3, 4]. Over time, many methods have been added and
removed. Table 1 summarizes the historical development.
After an initial explosion, the number of methods has de-

Table 1. HTTP methods defined in subsequent incarnations of t he protocol
Protocol Version Release Date Supported Methods Change from previous

Initial implementation Before 1991 GET —

Before HTTP/1.0 1991 GET, PUT, POST, HEAD, DELETE, LINK, UNLINK,CHECKIN∗, Added 12 methods.
CHECKOUT, SEARCH, TEXTSEARCH, SHOWMETHOD, SPACEJUMP

RFC 1945 (HTTP/1.0) May, 1996 GET, HEAD, POST, PUT, DELETE,LINK, UNLINK Removed six methods

RFC 2068 (HTTP/1.1) Nov, 1998 GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE Removed LINK, UNLINK;
(obsoletes RFC 1945) Added OPTIONS, TRACE

RFC 2616 (HTTP/1.1) June, 1999 GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE, CONNECT Added CONNECT
(obsoletes RFC 2068)

creased. The methods have been fairly stable since the stan-
dard has been published in RFC (Request For Comments)
1945 [5]. The current definition, RFC 2616 [9], consists
of eight methods. For the purpose of this paper, we divide
these methods into three groups:

(1) Read-only methods (GET and HEAD) that do not mod-
ify the state of the server. These are the only methods
that all resources are required to implement.

(2) Write methods (POST, PUT, and DELETE) that modify
the data on the server.

(3) Supporting methods (OPTIONS, TRACE, and CON-
NECT) that were added in version 1.1. These are in-
frastructure methods that provide access to resource op-
tions, debugging support, and secure connections.

RFC 2616 does not define the semantics of the CON-
NECT method. Unlike the other methods, CONNECT is
implemented by Web proxies. The client sends this method
to the proxy server to initiate the creation of an end-to-end
Secure Socket Layer (SSL) tunnel between a client and an
end server. RFC 2817 [13] complements RFC 2616 by de-
scribing how to use CONNECT to create an end-to-end SSL
tunnel through a proxy from a requesting client to a server.

HTTP requests have the following structure:

Method SP Request-URI SP HTTP-Version CRLF
Headers
CRLF
[message-body]

Method is the HTTP method (e.g., GET). SP stands
for space.Request-URI is the relative part of the web-
site address. It is set to “/” if the address is the home
page.HTTP-Version is HTTP/1.0 or 1.1.CRLF is car-
riage return and line feed.Headers is a list of head-
ers, which may be general, request, or entity headers,e.g.,
Content-Length, Date. They are separated byCRLF.
message-body (also calledentity) is optional and con-
tains the payload (i.e.,data).

The HTTP response consists of a status line, a set of
headers, and an optional message-body:

HTTP-Version SP Status-Code SP Reason-Phrase CRLF

∗Methods not included in the next protocol version are shown in italics.

Headers
CRLF
[message-body]

Some elements are identical to the request.
Status-Code is a numerical value of the result and
Reason-Phrase is a corresponding textual description.
For example, in the popular response “404 Not Found”,
the status code is 400 and reason phrase is “Not Found”.
Following common terminology, we refer to status codes in
the 400 and 500 ranges aserror codes. Headers include
general, response, and entity headers.

3. Related Work

Several experimental studies of HTTP have been con-
ducted in the past. These studies have provided motivation
for adding new features to the standard,e.g.,caching [6],
persistent connections [17], or pipelining [16]. The fre-
quency of such studies decreased after HTTP/1.1 became
official. Instead, more focus has been given to studying the
characteristics of specific network elements, such as Web
servers [2] and Web proxies [7].

We are aware of only one experimental work that is sim-
ilar to ours. PRO-COW [14] studied the compliance of Web
servers with HTTP/1.1 in 1999, soon after the standard was
published. This study focused on compliant implementation
of the mandatory and optional HTTP features, including
methods and headers. It analyzed 15 most popular websites
of 1999. Our study included 10 of these websites. A follow-
up PRO-COW study from 2001 [15] included 500 websites,
selected from 3 different services reporting the most pop-
ular sites. While the websites of these services still exist
today, they no longer list popular websites, so we could not
use them. We discuss PRO-COW results to verify our find-
ings in Section 8. We build on their results to provide a
more complete view of HTTP compliance of websites, Web
servers, and other Web systems.

4. Experimental Setup

We implemented an HTTP client to build, send,
and receive the HTTP methods using VisualWorks 7.1

(Smalltalk). The experiments consisted of sending OP-
TIONS, TRACE, GET, conditional GET, and HEAD meth-
ods to the home pages of each of the tested websites. The
methods that modify the state of the server (POST, PUT,
DELETE) were not tested, because it is not possible to set
up the same test for all the websites. See Section 7.1 for
more on this. To test CONNECT, we used Fiddler [8], an
HTTP debugging proxy that logs all the HTTP method traf-
fic between the sender’s computer and the Internet. All the
requests go through this proxy and it logs the requests and
responses. We browsed the Web pages of the tested web-
sites and looked for the presence of CONNECT messages.

Before presenting the results, it is important to address
potential criticisms of our approach. If our requests looked
like intruders rather than typical traffic, Web servers may
have responded with errors or failed to respond on purpose,
e.g.,as a protection from a Denial-of-Service attack. We
used Web-Sniffer [21], a website that displays headers of
various HTTP methods, and Fiddler to verify our findings
and got the same results. We considered sending the same
requests from multiple locations, but decided against it, fol-
lowing the findings of PRO-COW, which concluded that the
location of the requestor has little effect on the responses.

Like most popular sites, the sites targeted by our study
need many servers to handle all requests. They use load
balancing and caching proxies, which means that subse-
quent requests may go to different machines or may not
even reach the server. It would seem that our test results
would be difficult to reproduce, but this is not the case. We
analyzed all the results manually and collected them mul-
tiple times to verify that they are consistent. All websites
generated the same response for each request.

One shortcoming of our approach is that we have tested
only publicly accessible websites. It is possible that gov-
ernment or corporate intranets are configured to follow the
standard more closely. Unfortunately, we were unable to
obtain access to private intranets.

4.1. The Tested Websites

Our tests included 176 unique websites. We started with
the 100 most popular websites in the world, the 100 most
popular US websites, and the 25 top computer science de-
partments (we refer to them as World sites, US sites, and CS
sites in the remainder of the paper). But, due to duplication,
we obtained fewer unique results. The top 100 US sites
contains 32 of the top world sites. We included the over-
lapping sites only in the world count. Both world sites and
US sites include multiple copies of popular websites, espe-
cially Google. The top 100 world sites include 16 versions
of Google that correspond to different, country-specific do-
mains. All Google sites are set up exactly the same way –
they return the same headers in the same order in all tests –

thus we count them only once. The US sites also include 3
copies of Google site, which are not counted. This means
that the results for world sites tests contain 85 results, US
sites tests have 66 results, and CS sites tests have 25 results.

Among the most popular sites, Yahoo and eBay also
have multiple copies corresponding to different countries.
However, each of these sites is configured differently (i.e.,
each site includes different headers in response to the same
HTTP method), so each copy is counted individually.

We selected our test websites based on popularity. This
might seem counter-intuitive. What is popular need not be
the best. However, on the Web, the popularity translates
to more stringent availability requirements. Having more
traffic means that most popular websites are likely to face
more security threats, which makes them more likely to be
concerned with the proper use of the HTTP standard. To
see how these forces relate to compliance results, we also
tested the websites of the highest-ranked computer science
departments in the US. These websites represent a different
type of popularity and have different requirements. They
see lower volume of traffic, fewer market pressures (i.e.,
no need to make money) and have fewer security concerns.
However, the admins of these websites are likely to be well
versed in Web server setup.

4.2. The Classification of the Results

The results are classified according to the definitions
from the HTTP standard [9]. A method isunconditionally
compliantif it implements all “must” and “should” require-
ments. If it implements all “must” requirements, it iscondi-
tionally compliant. Otherwise it isnon-compliant. Also, we
use the termcorrectly to mean “according to the standard”.

Results can be classified in more detail based on the
response of a method.Implemented OKmeans that the
site is unconditionally compliant and returns all the ex-
pected data.Not implementedmeans that the site returns a
standard error code (405 Method Not Allowed along with
the Allow header, or 501 Not Implemented, or 404 Not
Found, or 403 Forbidden which “should” include an expla-
nation). This category is also unconditionally compliant.
Error Code in Responsemeans that the method is not sup-
ported/configured, but the response error code was not one
of the four listed above.Runtime Errormeans that there was
no reply. These two types of responses are non-compliant.

Some websites responded to our tests by requesting a
redirection to HTTPS. Since we were not testing HTTPS,
we could not classify these responses. Consequently, the
counts for some methods do not add up to 176.

This paper presents a summary of results. More de-
tailed results are available athttp://st.cs.uiuc.
edu/ ˜ padamczy/http_tests.html .

5. Supporting Methods

The supporting methods are analyzed first:

• OPTIONS is used to request the list of all the methods
that a Web server supports. These methods are listed in
theAllow header of the response.

• TRACE is used to monitor HTTP messages as they
travel through the Web. The destination server sends
the request message back to the sender and all the inter-
mediate network elements (proxies, gateways) include
their names in the trace by adding theVia header.

• CONNECT is used to change the connection with a Web
proxy to an SSL tunnel, resulting in a secure connection.

We discuss OPTIONS first, because it returns the list of
methods allowed by a server. Knowing which methods are
allowed by a given website helps to determine whether a
response with an error code is compliant or not.

5.1. Configuration Compliance Results

OPTIONS method. A standard implementation of OP-
TIONS (applied to resource “/”) “should” return the list of
methods supported by the server in theAllow header. Figure
1 summarizes the compliance results of this method.

Figure 1. Compliance results for OPTIONS

54 websites implement OPTIONS correctly. The uncon-
ditionally compliant category includes 34 sites whose re-
sponse contains anAllow header listing methods that are
not allowed by the website. Some of these responses indi-
cate that TRACE or HEAD are allowed, but invoking these
methods results in errors “501 Not Implemented”, “405
Method Not Allowed” or “403 Forbidden”. The wording
in the standard makes this case compliant, but we believe
that this is an error in the standard. If the contents of theAl-
low header are inconsistent with other methods, OPTIONS
results are misleading. 48 websites treat OPTIONS as if it
were a GET, which is also conditionally compliant∗.

∗RFC 2616, section 9.2 states:200 response SHOULD include any
header fields that indicate optional features implemented by the server and

An interesting example of non-compliance is sending re-
sponses with the status code “200 OK” but including an
empty entity named404.html . 3 websites return this
result. We suspect that this response is meant to circum-
vent the default behavior of some Web browsers that do not
display entities when the response contains an error code.
PRO-COW [15] study observed similar behavior.

OPTIONS/* method. The HTTP standard states that
OPTIONS applies only to the methods that are defined for
the specified Request-URI. To receive the list of methods
supported by the server as a whole, the Request-URI must
be set to “*”. But we found that OPTIONS is interpreted
in two different ways. OPTIONS sent to the Request-URI
corresponding to the home page can return: (1) all possible
methods defined by the server, or (2) all methods defined
for the requested page. This inconsistency means that one
test is not sufficient to gauge the compliance of OPTIONS.

To perform an accurate analysis of the implementation
of OPTIONS, we ran a second set of tests with the Request-
URI set to “*”. We refer to this version of the method as
OPTIONS/* in the remainder of this paper. The results for
OPTIONS/*, are shown in Figure 2.

Figure 2. Compliance results for OPTIONS/*

The OPTIONS/* method has more compliant responses
than OPTIONS. 130 websites return unconditionally com-
pliant responses. Only 4 responses from the World sites
treat OPTIONS/* like GET, but the number of misleading
Allow headers increases slightly. Since OPTIONS/* should
list all the methods valid for all URIs, its result should be a
superset of all the methods listed in the corresponding OP-
TIONS. But some websites report fewer methods in theAl-
low header of OPTIONS/* than in response to OPTIONS.
The number of error codes in responses increases as well;
4 websites return an empty entity named404.html . 69
websites return the same response for both OPTIONS tests.

Allowed HTTP methods. The Allow header (included
in OPTIONS or OPTIONS/*) would seem like a good in-
dicator of which methods are configured. Unfortunately,

applicable to that resource (e.g., Allow). TheAllow header is not required
in the response, so a response without it is conditionally compliant.

not all websites provide this information. Table 2 shows the
counts of HTTP methods reported. Depending on the server
type, the allowed methods are listed inAllow and/orPub-
lic header. For websites where OPTIONS and OPTIONS/*
return completely different results, the table reflects thecon-
tents of the response where the response lists more methods.

There is a discrepancy between most popular sites and
CS department sites. Only about 2/3 of most popular sites
(in the US and worldwide) return theAllow header in re-
sponses to OPTIONS or OPTIONS/*. In contrast, all but 2
CS department sites provide this information.

All the responding websites list GET and HEAD as sup-
ported methods. OPTIONS, TRACE, and POST are listed
in most responses. Other methods are listed sporadically,
primarily by the US sites. Section 7 has more on this and the
relevance of WebDAV. Some of the sites list other methods,
which were never in the standard (e.g.,INDEX, RMDIR).

TRACE method. A standard implementation of the
TRACE method “should” return the original message in
the response with theContent-Type header set tomes-
sage/http. It “should” also include aVia header listing
the gateways and proxies that processed this method, but
this requirement does not affect the compliance results of
the server. (Section 9.2 discusses our findings related to
proxies, collected fromVia and other non-standard head-
ers). The results for TRACE are summarized in Figure 3.

Figure 3. Compliance results for TRACE

Overall, 95 responses to TRACE are unconditionally
compliant. About half of the unconditionally compliant
World sites do not implement this method and indicate so
with the expected error codes. The conditionally compli-
ant responses fail to include the original message in the re-
sponse entity (23, 11, and 6 websites respectively). Non-
compliant responses return wrong error codes to report that
the method is not supported (13 websites in total), treat
TRACE like GET (7 websites), use the404.html entity
as the error code (5 websites), or fail to respond (16 sites).

CONNECT method. The end servers implement Se-
cure HTTP (HTTPS), which uses SSL to transport the
HTTP methods. The entire communication between the

SSL connection endpoints is encrypted. According to RFC
2817 [13], a client can create an SSL connection in two
ways. Direct SSL connection can be created if the client
communicates directly with the server. Alternatively, a
client can create an indirect connection by communicating
with a proxy and requesting the proxy to create an SSL tun-
nel ending at the origin server. This tunnel setup request is
initiated by the CONNECT method.

A client that is connected directly to the server can issue
an optional or mandatory upgrade request (asking the server
to switch to the SSL protocol) using GET or OPTIONS.
However, direct connections are not supported by any of the
websites we tested. The clients communicate with a proxy.
They send a CONNECT request to the proxy to set up a tun-
nel. The proxy communicates with the end server, creates
the tunnel, and, once the tunnel is set, silently forwards the
packets from the client to the end server.

We successfully sent the CONNECT method to a proxy
and created an SSL tunnel with 32 out of 85 World sites. We
did not see CONNECT in 53 other cases, because these end
servers do not implement HTTPS. For the 66 US sites, we
found that proxy servers are configured to use CONNECT
in 43 cases; the remaining 23 do not implement HTTPS.
All the CS sites implement HTTPS. The fact that CON-
NECT is not supported in many World and US websites
does not mean that it is unnecessary. It may be that the ori-
gin servers only contain public material (e.g.,CNN, Wash-
ington Post, IMDB), or they contain publicly editable ma-
terial (e.g.,Wikipedia), or they use some other encryption
scheme to achieve confidentiality (e.g.,Livejournal clients
send their data using POST, but the authentication data is
encrypted; Yahoo China sends username in plaintext, but
password in encrypted format).

The Allow header of OPTIONS indicates that only 4
websites claim to implement CONNECT (see Table 2):
Earthlink, Statcounter, Digitalpoint, and the CS Department
of the University of Pennsylvania. Surprisingly, Statcounter
and Digitalpoint do not implement CONNECT.

5.2. Discussion

Neither OPTIONS nor TRACE is configured sufficiently
well to perform the functionality defined in the HTTP stan-
dard. In practice, only CONNECT, defined outside of RFC
2616, is configured according to its specification.

Ideally, the clients could use OPTIONS to dynamically
discover what methods are supported by a resource and then
select the best method to invoke. However, only few web-
sites configure this method to return unambiguous, compli-
ant results indicating that dynamic discovery is not a good
idea. The OPTIONS method appears to be used mainly to
“confuse the enemy” (i.e.,hackers) by providing misleading
results in theAllow header. It prevent hackers from learning

Table 2. Allowed HTTP methods count, as reported in OPTIONS
GET HEAD POST PUT DELETE OPTIONS TRACE CONNECT Other WebDAV

World 65 65 42 4 3 65 61 0 3 1

US 42 42 34 18 17 41 39 3 17 7

CS 23 23 17 2 2 23 23 1 2 1

Total 130 130 93 24 22 129 123 4 22 9

the capabilities of the system. Browsers never send the OP-
TIONS method to the server. Hence it is natural to obscure
the information to achieve security through obscurity.

The TRACE method appears to be more useful, be-
cause message tracing and debugging is very difficult in dis-
tributed systems, such as the Web. TRACE is reminiscent
of the traceroute command. Yet, our results show that
few websites handle this method correctly. We suspect that
the reason for low compliance of these methods is security.

Many websites do not use CONNECT, because secu-
rity is not an important requirement for them. CONNECT
is used by 65% of the US sites, but by only 37% of the
World sites. This is because the top ranking websites in the
world represent different regions; and typically the social
networking and Web portal sites are highly ranked in all re-
gions. These sites have low security requirements and do
not use CONNECT. In contrast, many e-commerce sites are
featured in the top US sites (along with the more popular
social networking sites). Security is a key requirement for
these websites, so their providers configure the end servers
and the proxies correctly to execute the protocol.

6. Read-Only Methods

The read-only methods retrieve the data from the server:

• GET is used to retrieve the representation of a resource.

• HEAD is used to retrieve the headers (i.e., metadata)
of the corresponding GET method for a given Request-
URI, but without the entity.

6.1. Configuration Compliance Results

GET method. A standard implementation of the GET
method “must” contain an entity and two headers,Content-
Length andDate. Our results indicate that all websites are
fully compliant with this definition regardless of the Web
server or the protocol version they are using.

Since all Web servers implement the GET method cor-
rectly, we also tested one of the flavors of “conditional”
GET to see how the caching is supported. A conditional
GET is a GET method that includes a header whose name
begins with “If”, e.g., If-None-Match. The conditional
GET returns an entity only if the specified condition is true.

Conditional GET. A standard implementation of condi-
tional GET “should” return an entity only if the resource on

Figure 4. Compliance results for GET with If-
Unmodified-Since header

the server has been modified since the time specified by the
condition. But all the websites generate the content of their
homepage dynamically – each subsequent response has a
differentDate header and differentContent-Length.

For this test we needed an entity that changes less often
– instead of the homepage, we were requesting thefavicon,
which is a small icon logo of a website; Firefox displays
it to the left of the URL in the address bar. We tested the
websites that do not define a favicon by requesting a small
image from their homepage. We excluded from our test 7
websites that store all their graphics at a different domain.

To test the conditional GET, we selected the headerIf-
Unmodified-Since. PRO-COW [14] also tested this condi-
tion. This method “must” return status code “412 Precondi-
tion Failed” if the requested resource has not been modified
since the given date. We used a date 5 years ago to ensure
that all favicons were modified since. The results are sum-
marized in Figure 4.

The majority of websites in each category (49, 43, and
20 respectively) respond to this method correctly. There
are two types of non-compliant responses. 55 websites (33,
17, and 5 for each category) include an entity that has been
modified after the date we requested. Two websites respond
with status code “304 Use Local Copy,” which the standard
defines as the expected response to a conditional GET with
a different header,If-Modified-Since. There are no condi-
tionally compliant responses.

HEAD method. A standard implementation of HEAD
“must not” contain an entity and it “should” contain the
same headers as the corresponding GET method. The re-
sults are summarized in Figure 5.

Figure 5. Compliance results for HEAD

All 3 website categories return more conditionally com-
pliant responses (102 in total) than unconditionally com-
pliant ones (58 in total) for HEAD. Most unconditionally
compliant responses include exactly the same headers for
GET and HEAD (25, 12, and 9 respectively). Others return
the same headers, but with slightly different values (7 World
sites and 4 US sites). For example, CNN and AOL return
a different value ofConnection (“close” for HEAD and
“keep-alive” for GET), but all other header values match.

All the conditionally compliant responses have problems
with one header,Content-Length, which specifies the size
of the entity in the corresponding GET method. Recall that
all GET responses “must” includeContent-Length. Half
or more of all the websites in each category (42, 32, and 16
respectively) do not include theContent-Length header†.
Other responses have this header set to a value unrelated to
the value in the corresponding GET method (these 5 results
are counted underWrong Content Lengthin the figure). Yet
other responses set it to 0 (3 World and 4 US responses).

Since HEAD is a required method, every website “must”
configure it. Otherwise, it is non-compliant and counted
underError Code in Response.

6.2. Discussion

It is not surprising that all the tested websites configure
the GET method correctly, because GET is the essence of
the Web. Even more advanced versions of GET, such as
conditional GET, are configured correctly by the majority
of websites. This is because the conditional GET allows
Web clients to take advantage of caching.

In contrast, the HEAD method is seldom configured cor-
rectly. This result is surprising for three reasons. First,
HEAD is a required method. Every website is required to
support GET and HEAD. Second, HEAD seems to be easy
to implement by reusing the code for GET. In fact, Apache
uses the same code to handle both methods. The only code

†We shared all our test results with Apache developers. They informed
us that this is a known bug in Apache 2.x. They did not provide any insights
about the reasons for other non-compliant results.

where the handling differs is the check whether to include
the entity in the response. But even Apache Web servers
sometimes (due to bugs) fail to generate unconditionally
compliant responses to HEAD. One amusing problem is set-
ting Content-Length to 0, which suggests that the code for
GET is reused and the size of the entity is calculated dynam-
ically before it is sent. Since HEAD has no entity, the server
sets the value to 0. Third, HEAD performs useful tasks.
The metadata retrieved with HEAD is used (1) to determine
the size of entity before requesting a large resource, (2) to
verify that a resource still exists, and (3) to check when the
resource has been last modified. Over time, the first task has
become less significant, because improving network speeds
have made downloading data easier. The second task will
always be important. However the third task can be better
accomplished with conditional GET. When the client uses
HEAD to check if a resource was modified and the resource
was indeed changed, it must then send a GET to retrieve
it. With conditional GET, the resource is returned in one
message exchange, but only if it was changed.

It would seem that HEAD should be used often, yet the
test results show that it is not. Had it been used often, the
website admins would have to configure it correctly. We
suspect that this method is underutilized, because clientsdo
not know about it.

7. Write Methods

The HTTP standard defines three methods for modifying
resources stored on the server:

• POST is used to update the state of an existing resource.

• PUT is used to create a new resource or to replace the
entire contents of an existing one.

• DELETE is used to delete a resource.

7.1. Configuration Compliance Results

Unfortunately, the write methods cannot be tested uni-
formly. It is not possible to set up the same test for all web-
sites, because each website has its own policy for updating
resources. To set up a comprehensive test, we would need
to find unique modifiable resources on each website. To
modify these resources, we would also need to gain access
rights (e.g.,register with the website). In the end, all tests
would be unique rather than uniform.

PRO-COW collected compliance results for the POST
method by checking if Web servers report that POST is not
allowed using the standard-defined error codes. Such a test
is not convincing, because it tests the configuration of the
error reporting, rather than the configuration of the method
itself. Error reporting in the methods discussed in the previ-
ous two sections shows that most websites do not configure

error codes correctly. This is another reason why we did not
test POST responses the way PRO-COW did.

Instead, we use our test data to determine the relative
popularity of write methods by analyzing the contents of
theAllow header. The results collected from this header in-
dicate that POST is configured by 71.5% of websites that
returnAllow. (See Table 2). Much fewer websites report
that they support PUT or DELETE (18.5% and 16.9% re-
spectively). Moreover, some websites do not include POST
in the Allow header even if they support it. For instance,
Yahoo does not list any write methods in theAllow header,
but it must support at least one; otherwise the users could
not send messages through Yahoo email.

7.2. Discussion

The POST method is configured by most websites, while
PUT and DELETE are not. One reason for this is that the
definition of write methods in the standard is too complex.

The difference between PUT and POST is subtle. The
standard states that to set up or update a resource, a client
should send it to the server via PUT. Alternatively, to al-
low the server to determine how to update the resource, a
client would provide the data via POST. In practice, POST
is used almost always, because it makes the server respon-
sible for updating the resource. If the server determines
that the data submitted via POST should replace the current
data, it can do so anyway. A client wishing to update an ex-
isting resource using PUT, needs to first obtain the current
data stored in the resource (via GET), make the updates, and
then send the updated representation to the server via PUT.

Similarly, POST is used to delete resources. This is typ-
ically done by sending POST to a Request-URI that in-
cludes the word “delete.” This is not a good interpretation
of the standard, because the URI is supposed to identify a
resource. Including “delete” in the URI means that the URI
is used to identify the delete method on the server.

The easiest way to avoid this complexity when config-
uring a website is to use one method for all the cases. In
practice, all writes (including creation and deletion of re-
sources) are done with POST.

It might seem beneficial to remove PUT and DELETE
from the HTTP standard, because they are rarely used and
their tasks can be accomplished with POST. However there
are HTTP extensions that use these methods. WebDAV, a
standard for distributed authoring [10] is one example. It
uses existing HTTP methods (including PUT and DELETE)
and some new ones to define tasks for Web authoring: man-
agement of resource versions, access to collections of re-
sources, and access control. WebDAV is relatively popular;
7 of the top 100 US sites support it. So, it is important to
preserve PUT and DELETE as part of HTTP, because they
are relevant in other contexts.

8. Changes in Compliance

Our results show that the majority of the websites con-
figure only the GET method correctly. All other methods
are often misconfigured. To put these results in perspec-
tive, they should be compared with prior experiments. PRO-
COW project was a HTTP/1.1 compliance study that tested
13 different features (algorithms, methods, and headers) de-
fined in HTTP/1.1. Our experiments tested the same meth-
ods as PRO-COW. Other PRO-COW tests, such as the pres-
ence of mandatory headers in methods, or persistence and
pipelining are outside of the scope of our study. They tested
low-level details of the protocol, while we are focusing on
methods that the clients can call. Table 3 compares the re-
sults of the 6 tests common to both studies. Each method
shows the percentage of unconditionally compliant, condi-
tionally compliant, and non-compliant configurations. They
are derived from values described in the previous sections.

There are two PRO-COW papers. The first one presents
results for 15 sites in 1999 [14]. The second one tested 500
websites and produced similar results in 2001 [15]. Except
for OPTIONS/*, we use the results from the first paper, be-
cause they show a single value for each test.

The results, summarized in Table 3, show two trends:
(1) increased compliance of the GET method, and (2) un-
changed or decreased compliance of other methods.

The results of GET, very good in PRO-COW, are per-
fect in our tests. The results of the conditional GET show
improvement in unconditional compliance, but still show a
lot of non-compliance. The increased compliance of condi-
tional GET indicates that the configuration of features like
caching, which are useful to clients, will improve over time.

In contrast, TRACE and HEAD show large decrease in
unconditional compliance, and TRACE shows significant
increase in non-compliance. OPTIONS shows an increase
of unconditional compliance, but a larger increase in non-
compliance. This indicates that these methods are not used
in practice. Since clients do not use them, website adminis-
trators have no incentive to configure them correctly (recall
mismatched headers of GET and HEAD, or responses miss-
ing the original request in TRACE). Ambiguity in the stan-
dard definition (as in OPTIONS) is also a cause of bad con-
figurations. Lastly, the results of OPTIONS, and especially
TRACE, illustrate a change of culture prompted by the se-
curity concerns that occurred after the PRO-COW study.

9. Compliance of Implementation

We sent the test messages to websites, but the data we
collected says a lot about the Web servers that generated the
responses and Web proxies through which our tests passed.
This section discusses how Web servers and Web interme-
diaries (proxies, caches, etc) implement the HTTP standard.

Table 3. Website compliance results comparison with PRO-CO W (All values are in percentages)
OPTIONS OPTIONS/* TRACE

PRO-COW World US CS PRO-COW World US CS PRO-COW World US CS

Unconditional 59.8 54.8 65.2 72.0 26.8-32.3 69.0 73.8 96.0 97.3 50.6 53.0 68.0
Conditional 39.4 33.3 19.7 28.0 65.0-72.4 4.8 0.0 4.0 2.5 27.1 16.7 24.0
Non-compliant 0.8 11.9 15.1 0.0 0.8-2.7 26.2 26.2 0.0 0.2 22.3 30.3 8.0

HEAD GET Conditional GET

PRO-COW World US CS PRO-COW World US CS PRO-COW World US CS

Unconditional 72.9 38.1 26.2 36.0 83.5 100.0 100.0 100.0 41.7 59.0 70.5 80.0
Conditional 9.4 54.8 61.5 64.0 16.1 0.0 0.0 0.0 1.2 0.0 0.0 0.0
Non-compliant 17.7 7.1 12.3 0.0 0.4 0.0 0.0 0.0 57.1 41.0 29.5 20.0

9.1. Web Servers

To determine the compliance of Web servers, we ex-
tracted the names of Web servers from the responses. Typ-
ically the Server header identifies the type and version
of the Web server. Only 10 websites that we tested do
not include this header or send meaningless values (e.g.,
“server”). Among them are Yahoo and Amazon. Table 4
shows the count of Web servers used by the tested websites.

Table 4. Web servers used by tested websites

Vendor Server Type World US CS

Apache/1.3 15 10 7
Apache Apache/2.x 14 8 12

Apache (Unspecified) 24 19 4

Total Apache 53 37 23

Microsoft IIS/5.0 5 6 1
IIS IIS/6.0 9 8 1

Total IIS 14 14 2

Netscape 1 4 0
Other Sun-ONE 1 3 0

Other (AOL, lighttpd) 9 5 0

Total Other 11 12 0

Not Specified 7 3 0

Total 85 66 25

Apache is the most popular Web server in our tests. Most
non-US sites use Apache, as do almost all top CS depart-
ments. Microsoft’s IIS is more popular in the US, but less
known Web servers are also more often used in the US sites.

We mapped the correctly configured websites to specific
Web server versions to find which servers implement the
standard correctly. Most Web servers versions listed in Ta-
ble 4 have a corresponding, correctly-configured website.
Table 5 lists some examples.

Table 5. Example websites that pass all tests
Server type Website Description

Apache/1.3 www.apple.com Apple Inc.

Apache/2.0 www.cs.ucsd.edu CS Dept., University of
California, San Diego

Apache/2.2 www.cs.utexas.edu CS Dept., University of Texas

IIS/5.0 www.realtor.com Realtor real estate

SunONE/6.1 www.nytimes.com NY Times newspaper

Moreover, some websites using IIS/6.0 and Netscape/6.0
come very close to passing all our tests. MySpace, us-
ing IIS/6.0, is unconditionally compliant with all methods
except OPTIONS. TheAllow header of OPTIONS lists
the TRACE method, but when it is called, it returns er-
ror code “501 Not Implemented”. Similarly, Comcast (us-
ing Netscape/6.0) responds to all methods, but it returns
wrong status codes – 413 instead of 501 for the unsupported
TRACE and 304 instead of 412 for GET If-Unmodified-
Since. Had we tested more websites that use these two
servers, we would likely find perfect configurations.

These results show that the type of Web server used does
not influence the compliance of a website. Since we are able
to find at least one example of a fully-compliant website
for almost every server type, these server typesare fully-
compliant. Our results show that well-implemented servers
are configured to be non-compliant on purpose.

The PRO-COW study does not consider the relationship
between Web server implementation and configuration. It
counts the number of compliant results per Web server type,
implying that website configuration and Web server imple-
mentations are closely related. This is not correct. There
are many reasons why websites that use a certain version of
a Web server are misconfigured more often. This may be
the most popular server, so everyone wants to use it, and it
is easier to find non-compliant configurations. Or the server
may have many security flaws and people misconfigure it
on purpose. Or the server might be very hard to configure.

It is not possible to infer server compliance from per-
centages of website results. However, it is possible to de-
termine which Web servers tested by PRO-COW were im-
plemented correctly. They show the percentage of servers
that pass all tests sorted by server types. Some Apache/1.2,
Apache/1.3 and IIS/4.0 servers passed all tests, while none
of Netscape/3.5 and 3.6 did. This is consistent with our re-
sults: most Web servers implement the standard correctly.

Web server security. It might seem that a website iden-
tifying the type and version of its server creates a security
vulnerability, but this is not the case. Although there are
few major server vendors, they offer multiple versions of
the software and each version has many configurations.

9.2. Web Intermediaries

Our tests of OPTIONS, OPTIONS/* and TRACE pro-
duced responses with spoofedServer headers. Spoofing
is typically done by Web intermediaries that override the
Server header with their own name. SquidCache and Aka-
maiGHost are the two most popular Web intermediaries in
our tests, each of them overriding theServer header of 9
different websites. SquidCache is a caching proxy, while
AkamaiGHost is a content delivery system. Most spoofed
headers are in responses with error codes. For example, if
a method is not supported, the intermediary, not the server,
sends an error response. We know this because theServer
header is changed to the name of the intermediary and the
HTTP version is set to 1.0. That is not to say that all web-
sites are HTTP/1.1-compliant. Some of today’s most pop-
ular websites (Wikipedia, AOL, Mapquest) use HTTP/1.0.
13 websites return all responses as version 1.0. Other non-
standard ways of including the information about the inter-
mediary in the response are adding new headers (e.g.,S,
X-Server, X-cache) or using existing headers (e.g.,From,
which is supposed to return an e-mail address).

This behavior is non-compliant. The HTTP standard
states that gateways and proxies “should” identify them-
selves in theVia header and “must not” modify theServer
header. HTTP errata [12] further clarifies that theVia
header “must” be used in all methods, but this rule is rarely
followed. We collected only 13 responses, from 5 different
websites, that includeVia. Possibly theVia header is not
used, because clients are not interested in this information.
Web browsers hide this information from the users. Proxies
may also be configured not to report their identity inVia to
overcome the problem of finding open proxies on the Web.

Although some of the HTTP methods were defined only
in HTTP/1.1, all our results include the data obtained from
both HTTP/1.0 and HTTP/1.1 responses. This is because
many of the 1.0 responses are 1.1-compliant. The HTTP
version header is not end-to-end, which means that Web in-
termediaries that handle the response may change its value,
even without modifying the contents of the response. Most
intermediaries we observed implement only HTTP/1.0. But
HTTP/1.0 is still in use by websites as well. Some of to-
day’s most popular websites (Wikipedia, AOL, Mapquest)
use it. 13 websites return HTTP/1.0 in all responses.

The above results seem to imply that Web proxies still
do not implement the HTTP/1.1 standard correctly. But
the results of the CONNECT method show that proxies im-
plement secure connections (defined after HTTP/1.1) quite
well. Web proxies implementing CONNECT support SSL
2.0, SSL 3.0, and TLS 1.0 (a.k.a.SSL 3.1). We used Inter-
net Explorer 6.0 on Windows XP for the tests. Internet Ex-
plorer sends a TLS 1.0 compatible ClientHello handshake
request to initiate the protocol. The server returns an SSL

3.0 compatible response through the proxy and the tunnel is
set up according to SSL 3.0. This is possible, because TLS
1.0 can be downgraded to SSL 3.0. We obtained the same
results with Firefox 1.5.

Proxy non-compliance with HTTP is not caused by a lag
in implementation, but rather it indicates that some HTTP
features are not important from the proxies’ perspective.

Web proxy security. Security vulnerabilities of TRACE
have an indirect effect on proxies. Websites that enable
TRACE can become targets of ‘cross site tracing’ attack that
could reveal user information [19]. A script on the client
machine can forward a response to a TRACE method with
Cookie headers to a malicious server [11]. To prevent this,
many servers return the length of the TRACE request in-
stead of the whole request to the client. We suspect that
proxies not include theVia header due to such vulnerabili-
ties.

10. Analysis of the Results

By now, the key result of our experiments should be ob-
vious: HTTP methods do not behave according to the stan-
dard. The PRO-COW paper [14] concludes: “The results
of our experiment show that the situation on the Web must
first be improved at the origin server before we can worry
about end-to-end improvements.” Yet 6 years after the PRO-
COW experiments, our tests show that the results have not
changed much. But the Web is doing just fine. Why is that?

Perhaps website admins are incompetent and their setups
are incorrect. The websites we tested generate the most traf-
fic and probably face the most security threats. For many of
these websites (just consider Google), the Web presence is
their entire business. To ensure availability, they must be
configured well. Therefore this hypothesis is not true.

Perhaps it is difficult to set up Web servers, because
they come with bad defaults. While this hypothesis seems
plausible, it is not true either. We installed two versions
of Apache to see what their default configurations are. In
Apache 1.3 for RedHat, all the methods (even PUT and
DELETE) are configured correctly out of the box. The same
is true for Apache 2.0 for Windows XP. A website is oper-
ational in minutes after the Web server software is down-
loaded. It is harder to disable correct configurations.

Perhaps bad website configuration is done on purpose.
As noted in the previous paragraph, the Web servers have
standard-compliant default settings, yet the compliance of
configurations varies. The non-standard setup of less pop-
ular methods could be a way to achieve security through
obfuscation. Security vulnerabilities mentioned in the pre-
vious section support this hypothesis.

Perhaps it is not important to be compliant with the entire
HTTP standard. Even the most popular sites seem to be
satisfied that the key features are working. If GET or POST

method were to suddenly stop working, they would need to
be fixed immediately. The other methods are not used often
enough to demand proper configuration.

Perhaps most Web traffic is handled by HTTP-agnostic
systems, such as content delivery systems. Such Web inter-
mediaries do not operate at the HTTP layer, but use different
protocols in their communication with the servers. When
they produce HTTP responses on behalf of the servers, such
responses are seldom HTTP-compliant.

There are other explanations for the low compliance re-
sults, but the last three reasons - security concerns, the lim-
ited use of most HTTP methods, and HTTP-agnostic sys-
tems - shed some light on this problem. There is a discon-
nect between the theory (HTTP standard) and practice (sys-
tem compliance) on the Web. In theory, HTTP is a simple
protocol for the Web. It was designed to be extended with
specialized protocols, such as WebDAV. In practice, only a
small subset of HTTP is used. Web systems built on top
of the simplified HTTP add capabilities that already exist in
the full-fledged HTTP, but not in the commonly-used sub-
set.

11. Conclusion and Future Work

Our study of different types of popular websites shows
that most of them are not compliant with HTTP. While Web
servers implement the standard very well, few of the web-
sites are configured correctly. This is a continuing trend, yet
it has not affected the growth of the Web.

Our results provide experimental evidence for the de-
bates about the future of the Web. More specific experi-
ments are needed to address them fully, but some debates,
e.g.,REST vs. SOAP [18], lightweight vs. standards-based
security for Web services, can benefit from our results.

The relationship between theory and practice of building
Web systems is very complex. Studying only one small as-
pect of it is not likely to produce comprehensive results,
but it is an important step toward a better understanding
of the Web. We provide three hypotheses explaining the
HTTP non-compliance, but obtaining a clearer picture re-
quires more studies, including surveys of website admins
and server implementers. We hope to have raised enough
interesting questions for others to join this conversation.

References

[1] Alexa. http://www.alexa.com .
[2] M. Arlitt and C. Williamson. Understanding Web server

configuration issues. Software Practice and Experience,
34(2):163–186, Feb. 2004.

[3] T. Berners-Lee. The original HTTP as defined in 1991.
http://www.w3.org/Protocols/HTTP/
AsImplemented.html , 1991. W3C webpage.

[4] T. Berners-Lee. Is there a paper which describes the WWW
protocol. http://lists.w3.org/Archives/
Public/www-talk/1992JanFeb/0000.html , Jan
9 1992. WWW-talk mailing list.

[5] T. Berners-Lee, R. T. Fielding, and H. Frystyk Nielsen. Hy-
pertext Transfer Protocol — HTTP/1.0. Internet informa-
tional RFC 1945, May 1996.

[6] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul.
Rate of change and other metrics: A live study of the World
Wide Web. InProceedings of the 1997 USENIX Symposium
on Internet Technologies and Systems (USITS-97), Mon-
terey, CA, 1997.

[7] B. M. Duska, D. Marwood, and M. J. Freeley. The
measured access characteristics of World-Wide-Web client
proxy caches. In1997 USENIX Symposium on Internet
Technologies and Systems (USITS-97), Monterey, CA, 1997.

[8] Fiddler. http://www.fiddlertool.com/
fiddler .

[9] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk Nielsen,
L. Masinter, P. J. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1. Internet proposed standard
RFC 2616, June 1999.

[10] Y. Y. Goland, E. J. Whitehead, A. Faizi, S. Carter, and
D. Jensen. HTTP Extensions for Distributed Authoring —
WebDAV. Internet proposed standard RFC 2518, Feb. 1999.

[11] J. Grossman. Cross-Site Tracing (XST).
www.cgisecurity.com/whitehat-mirror/
WH-WhitePaper_XST_ebook.pdf , Jan 2003.

[12] HTTP/1.1 specification errata.http://skrb.org/
ietf/http_errata.html , Oct 2004.

[13] R. Khare and S. D. Lawrence. Upgrading to TLS within
HTTP/1.1. Internet proposed standard RFC 2817, May
2000.

[14] B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol com-
pliance on the Web. Technical Report 990803-05-TM, HP
Labs, 1999.

[15] B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol com-
pliance on the Web — A longitudinal study. InProceedings
of the 3rd USENIX Symposium on Internet Technologies and
Systems (USITS-01), San Francisco, CA, 2001.

[16] H. F. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, H. W. Lie, and C. Lilley. Net-
work performance effects of HTTP/1.1, CSS1, and PNG.
In Proceedings of the ACM SIGCOMM ’97 conference on
Applications, technologies, architectures, and protocols for
computer communication, Cannes, France, 1997.

[17] V. N. Padmanabhan and J. C. Mogul. Improving HTTP la-
tency. Computer Networks and ISDN Systems, 28(1–2):25–
35, Dec. 1995.

[18] P. Prescod. Roots of the REST/SOAP debate. InEML 2002:
Proceedings of the Extreme Markup Languages 2002 con-
ference, Montreal, Canada, 2002.

[19] US-CERT Vulnerability Note VU867593. Multiple ven-
dors’ Web servers enable HTTP TRACE method by
default. https://www.kb.cert.org/vuls/id/
867593 , Jan 2003.

[20] US News and World Report.http://http://www.
usnews.com/usnews/home.htm .

[21] Web-sniffer v1.0.24.http://web-sniffer.net/ .

