A security oriented program transformation to ‘“‘add on” policies to
prevent injection attacks

Munawar Hafiz, Ralph Johnson

University of Illinois at Urbana-Champaign

(mhafiz, rjohnson)@cs.uiuc.edu

Abstract

Topping the list of the most prominent attacks on applica-
tions [6] are various types of injection attacks. Malicious
inputs that cause injection attacks are numerous; program-
mers fail to write checks for all attack patterns. We define a
program transformation that allows a programmer to think
in terms of rectification policies and automatically add these
policies to convert unsafe data inputs to safe inputs. The se-
curity oriented program transformation applies to all classes
of injection attacks, easing the burden of programmers who
would otherwise have to manually write checks.

Categories and Subject Descriptors D.2.10 Software [Soft-
ware Engineering]: Design; D.2.11 Software [Software En-
gineering]: Software Architectures; K.6.5 Computing Mi-
lieux [Management of Computing and Information Systems):
Security and Protection

General Terms Design, Security

Keywords Injection Attack, Program Transformation, In-
put Rectification Policy.

1. Introduction

Recent exploration into injection attacks tally eighteen vari-
ants [3]. This excludes buffer overflow and format string at-
tacks, both of which technically fall under the same category.
Despite the exclusion, classes of injection attacks pose the
most severe threat [6] on today’s applications.

During secure software design, programmers write checks
for screening malicious inputs. But, it is difficult for a pro-
grammer to enumerate all attack patterns and manually write
checks for these conditions. This difficulty is the reason why
injection attacks exist in the first place.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WRT ’08 Oct, Nashville
Copyright (© 2008 ACM [to be supplied]. .. $5.00

This paper shows that it is possible to add protection
against injection attacks by applying program transforma-
tions. There are many kinds of program transformations.
Compilers transfer programs in source form to equivalent
programs for a particular machine language. Refactorings
are source to source transformations that change the struc-
ture of programs but not their behavior. Our program trans-
formation is similar to a refactoring. However, it improves
the security of systems, which means that it does not pre-
serve all types of behavior. It preserves expected behavior,
but should change a system’s response to security attacks.

Our program transformation applies the Decorator pat-
tern [2] to decorate variables with policies that transform un-
safe inputs to safe inputs. Our approach introduces the con-
cept of input rectification policies, aimed for security. The
automation allows programmers to concentrate on types of
applicable policies instead of worrying on how to manually
implement the checks.

We automate the refactoring with a proof-of-concept Java
plugin that shows how the refactoring is applied to protect
against SQL injection attacks. However, the purpose of this
paper is not to describe a program transformation or a tool
for program transformations. Instead, it is to show that there
are security-oriented program transformations that allow se-
curity to be added on demand.

We use a small Java program to show the effect of our
program transformation. The next section lists the program.
Then we describe the injection attack elimination program
transformation. To describe the transformation, we have
augmented the format [1] for describing refactorings. In the
heart of our refactoring are rectification policies, each of
them relevant to a type of injection attack. We conclude with
a discussion on these policies.

2. An Example Insecure System

We illustrate how our program transformation can add se-
curity on demand with a small Java program. Class DB-
Connect contains methods for connecting to a database
(connect), querying for data and showing result from the
database (showData), closing the database connection (close),
and launching the program (main). The database contains a

single table named users, with three fields for storing user id,
user name and password. Our focus is on showdata method.
It reads input from standard input (lines 18-26), prepares
the query and executes it (lines 28—30), and shows the result
(lines 31-37).

1 import java.io.BufferedReader;

2 import java.io.IOException;

3 import java.io.InputStreamReader;

4 import java.sql.x*;

5

6 public class DBConnect {

7 private Connection conn = null;

8

9 public void connect() {

10 // Connects to the database

1 }

12

13 public void showdata() {

14 ResultSet rs;

15 Statement st = null;

16 StringBuffer query = new StringBuffer();

17 String username = new String();

18 InputStreamReader isr =

19 new InputStreamReader (System.in);
20 BufferedReader stdin = new BufferedReader(isr);
21 try {

2 username = stdin.readLine();

23 } catch (IOException el) {

24 el.printStackTrace();

25 }

26

27 try {

28 st = conn.createStatement();

29 rs = st‘executeQuery("select * from users " +
30 "where username = ’" + username + "’");
31 while (rs.next()){

32 int uid = rs.getInt("userid");

33 String uname = rs.getString("username");

34 String password = rs.getString("password");
35 System.out.println((new Integer(uid)).toString()
36 + " " + uname + " " + password);
37 }

38 rs.close();

39 st.close();

40 } catch (SQLException e) {

41 e.printStackTrace();

) }

43 }

44

45 public void close(){

46 // Close database connection

47 }

48

49 public static void main(String[] args) {

50 DBConnect dbConnect = new DBConnect();

51 dbConnect.connect () ;

52 dbConnect .showdata() ;

53 dbConnect.close();

54 }

55 }

56

Suppose the user enters the string “Alice” for input. The
resultset consists one row containing information about Al-
ice.

Attacking this program is straightforward. A malicious
user enters ' or ‘1'="1" for input. The resulting query is,

select * from users where
username = ¢’ or ‘1’=°‘1’

Our refactoring allows a programmer to apply rectifica-
tion policies at design time. When a malicious user enters an

unsafe input, the applied policies transform the unsafe input
to safe input. The query executes normally and the attack is
prevented.

3. Injection Attack Elimination
Transformation

You have a program that accepts inputs from users. The
programmer has envisioned its input domain, but in practice
it accepts inputs outside the pre-conceived domain. Some of
these inputs could be malicious; you want to ensure that the

program is not vulnerable to attacks originating from the

injection of malicious inputs.

Apply policies to input variables that transform unsafe
inputs to safe inputs.

Parameter inserted from variable vart in program prog1

select * from tablel where paraml = j o s SQL statement

Non-malicious irrelevant input

Input domain of variable var1 in program prog1

\

Policy p1, p2 and p3 applied on variable var1

e ——
_—— Walicious Tnput Zone

Non-malicious irrelevant input

Modified input domain of variable var1 in program prog1
(Inputs transformed to fall within the comfort zone)

3.1 Motivation

There are eighteen different types of injection attacks. They
affect various programming environments, e.g. SQL injec-
tion attack affects a database manipulation language, LDAP
injection attack affects statements of the directory access
protocol, cross site scripting injects malicious code through
an HTTP payload, log injection attack corrupting data in sys-
tem log files etc. Although not included in the taxonomy,
buffer overflow attack and format string attack are techni-
cally injection attacks — during buffer overflow, an attacker
injects a malicious input with long length to corrupt the pro-
gram counter, whereas in the other case, an attacker injects
malicious format instructions to corrupt data or reveal sys-
tem information. Together, injection attacks pose the most
insidious threat on modern software.

Programmers determine a comfort zone [5] of inputs and
write checks to prevent inputs outside the zone. However,
writing input correctness checks for each input is a tedious
task, and programmers often make mistakes that allow an
attacker to run a program with inputs outside the comfort
zone. Besides, correctness tests are not exercised during

the normal execution of the program; therefore, they might
receive less attention during testing.

Replacing the manual checking with automated tools al-
low programmers to concentrate on policies rather than the
mechanism of implementing checks.

3.2 Preconditions

This program transformation applies to programs in any ob-
ject oriented language (that allows accessing and manipulat-
ing the abstract syntax tree) running in Unix and Windows
environment. However, the concept can be translated to pro-
tect programs written in non-object oriented languages. The
applicability of the transformation also depends on the pol-
icy to be applied. A program with the following characteris-
tics benefits from a buffer overflow elimination transforma-
tion.

e The program has injection vulnerabilities originating
from unsafe inputs. Inputs are incompletely or incorrectly
checked.

e There are attack patterns that can be used to implement
the rectification policies.

e Rectification policies do not eliminate valid inputs.

3.3 Mechanism

Refactor code to encapsulate an input variable in the abstract
component of a Decorator [2]. Write policies that transform
the input to make it safe. Figure 1 describes how a string
variable is decorated with policies that remove SQL injec-
tion attack vectors.

AbstractStringContainer
~str: String
+ convert() : AbstractStringContainer

il

#component

UnsafeString
+ convert() : AbstractStringContainer

component : AbstractStringContainer
pattern : String
+ convert() : AbstractStringContainer

SQLl

+ convert() : AbstractStringContainer

| SQLPolicyRem: |
1 |
] |

|+ convert() : AbstractStringContainer

Figure 1. Class diagram describing policies to apply on an
unsafe string

Change the source code to import policy classes. Before
the input variable is referenced, apply policies to rectify it.

3.4 Example

To illustrate the program transformation, we have written an
Eclipse plugin to apply SQL injection prevention policies on
Java programs. A programmer has to specify the variable to
rectify and the policies.

In the example program, we have applied policies to re-
move AND and OR statements (from figure 1). The resulting
code is shown here with the changes highlighted.

import model.PolicyDecorator;

import model.UnsafeString ;

import model.sqlpolicy.SHLPolicyRemovelr ;
import model.sqlpolicy.SULPolicyRemoveAnd ;

public void showdata() {
UnsafeString username = new UnsafeString() ;

try {
s.setStr(stdin.readLine()) ;
} catch (I0Exception el) {

try {
st = conn.createStatement();
PolicyDecorator policy =
new SQLPolicyRemoveAnd(
new SELPolicyRemoveOr (username)) ;

rs = st.executeQuery("select * from users " +
"where username = ’" +
policy.convert().getStr()
DY

4. Policy Suites for Injection Attacks

Each injection attack is different; it has its own set of pre-
vention policies. Table 1 lists some attacks and their sample
input rectification policies.

The goal of all injections is to run code in place of data;
hence most policies remove/replace keywords and special
characters. Attackers counter this by applying various en-
coding schemes. Canonicalizing data is very important be-
fore applying any removal/replacement policies. Table 1 also
list policies for encoding/decoding.

There are many types of encodings that an attacker can in-
corporate in one input to bypass scans. In this case, selecting
all policies is burdensome for a programmer. This problem
can be solved by introducing composite policies.

5. Issues

One might argue that this approach tries to enumerate bad-
ness [4], which is a common security mistake. In reality,
policies do not have to identify bad patterns in data and re-
move them. Instead, they can describe good properties of
data and discard everything that is aberrant.

However, enumerating badness is a common principle
embraced by every filter. In this case, our transformation
would provide defense in depth by adding one additional
layer of checking.

Another issue is what to do with the transformed input
that does not make sense. Doctoring malicious inputs would
produce such inputs. This causes a program to behave dif-
ferently, but only from the perspective of attackers. Normal
users do not inject malicious inputs, hence the policies never
alter their input. An extreme measure is to change the at-
tacker’s input to an irrelevant but good input whenever a
policy applies to user input. This has two advantages. First,

Type of
Injection Attack

Sample
Rectification Policy

Description of Transformation

Remove SQL keyword

Searches input for SQL keyword, e.g. SELECT, AND, OR, UNION etc.
and removes the keyword.

Input Data: > OR ’1’="1

After Rectification: * *1’="1

Strip SQL keyword

Searches input for SQL keyword, e.g. SELECT, AND, OR, UNION etc.
and strips the string from that point.

Input Data: * OR "1’="1

After Rectification: ’

Remove/Strip single

SQL Injection quote

Searches input for single quote and remove/strip it.
Input Data: > OR ’1’="1

After Rectification: OR 1=1 (Remove)

After Rectification: (Entire string is stripped)

Escape single quote

Searches input for single quote characters and escapes them.
Searches input for single quote characters and escapes them.
After Rectification: ” OR ”17="1

Remove comments

Searches input for SQL comments and removes comments
Input Data: > OR *1’="1 — something else
After Rectification: OR ’1’="1

Decode hex encoding

Decodes any part of the input that has been encoded in hex.
Input Data: 0x73656¢656374
After Rectification: SELECT

Direct Static
Code Injection

Remove system
commands

Searches input for system commands such as system, rm etc.
Input Data: rm%20-rf%20/
After Rectification: %20-rf%20/

Remove symbol
LDAP Injection

Searches input for wildcard character and removes it.
Input Data:
After Rectification: (Wildcard symbol removed)

Removes & and —
characters

Searches input for LDAP and (&) and or (—) character and removes it.
Input Data: Alice)(—(password="))
After Rectification: Alice)((password="))

Strip newline (n)

Log Injection character

Strips string at newline character (or other special characters)..
Input data: Alice 23:45:27 n root 23:45:24
After Rectification: Alice 23:45:27

Remove javascript
statement

Searches input for javascript statement and removes it.
Input data: ;IMG SRC="javascript:alert("XSS’);”;
After Rectification: IMG SRC="";

Remove ;SCRIPT},
tag

Searches for {SCRIPT;...;/SCRIPT{, and removes it.
Input data: {SCRIPT alert(’XSS’);i/SCRIPT,,
After Rectification: (;SCRIPT, tag removed)

XSS Injection

Decode UTF-8
encoding

Decodes UTF-8 encoding in code.

Input data: ;IMG SRC=java
va&H#115;cri
pt:ale
rt('XS
S'&H#41;;,

After Rectification: IMG SRC="javascript:alert(’XSS");”;

Table 1. Sample policies for various transformations

it restricts policies to create inputs that are bogus but outside
the comfort zone of the program, thus making the program
more robust. Second, it postpones checking for further poli-
cies and returns, thus improving performance.

6. Conclusion

‘We have introduced input rectification policies and described
a program transformation to apply the policies. Thinking in
terms of security policies would motivate in depth studies
on policies to prevent various types of injection attacks. This
effort would benefit from the studies on attack signature
generation. Whether using existing policies or customizing
new policies, programmers would be freed from writing
boring checks and be able to concentrate on more productive
tasks.

References

[1] Martin Fowler. Refactoring: Improving The Design of Existing
Code. Object Technology Series. Addison-Wesley, June 1999.

[2

3
[4

[5

[6

—

—_

—

[

With contributions by Kent Beck, John Brant, Willima Opdyke,
and Don Roberts.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns. Addison-Wesley, 1995.

OWASP. Categories of injection attacks, 2008.

Marcus J. Ranum. The six dumbest ideas in computer security.
http://www.ranum.com/security/computer_security/
editorials/dumb/, September 2005.

Martin C. Rinard. Living in the comfort zone. In OOPSLA "07:
Proceedings of the 22nd annual ACM SIGPLAN conference on
Object oriented programming systems and applications, pages
611-622, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-786-5.

Andrew van der Stock, Jeff Williams, and Dave Wichers.
OWASP Top 10 - The ten most critical web application security
vulnerabilities - 2007 update, 2007.

