
Program transformation to add-on protection against buffer
overflow

Munawar Hafiz, Ralph E. Johnson
University of Illinois at Urbana-Champaign

(mhafiz, rjohnson)@cs.uiuc.edu

Abstract
Security requirements change. Many legacy systems fail to
cope with the changing requirements because it is infea-
sible to redesign these systems. This paper is an example
that protection can be added on to an existing system by
program transformation. We successfully transformed the
source code of three open source C programs to introduce
protection against buffer overflow attacks. By describing se-
curity solutions as program transformations, it is possible to
retrofit security to an existing system.

Categories and Subject Descriptors D.1.2 [Automatic
Programming]: Program transformation; D.2.9 [Software
Management]: Software maintenance; D.2.11 [Software
Architectures]: Patterns.

General Terms Security.

Keywords Program Transformation, Buffer Overflow, Se-
curity.

1. Introduction
Security is architectural; it is a property of the entire system,
not one part of it. Security experts generally say that “secu-
rity cannot be added on, it must be designed from the begin-
ning” (Anderson 1972). Security solutions cannot be added
to a system by adding a module, but it can be added in other
ways. In particular, it is possible to improve the security of a
system by “adding on” a program transformation.

This paper provides an example that security can be
added on to an existing system. We introduce a program
transformation that changes vulnerable C source code and
makes it safe from buffer overflow attacks. The purpose of
this paper is to show that program transformations are use-
ful for making software secure, not to provide new ways

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

of analyzing programs or representing programs. We imple-
mented our program transformation using crude techniques,
and there are certainly better ways to implement it. However,
even this simple example shows that program transforma-
tions can help make software more secure.

Removing the buffer overflow vulnerability is one step;
it might require multiple steps to make a program more
secure. If each of these steps is described as a program
transformation, a number of such transformations can be
applied to a program to introduce various types of protection.

Our paper starts with a comparison of the common prac-
tices for preventing buffer overflow attacks. Then we de-
scribe our program transformation methodology and the re-
sults of applying this on three open source C software. Fi-
nally, we argue how other security solutions can be described
as program transformations.

2. Buffer Overflow Attacks
Buffer overflow is the oldest and the most common security
vulnerability (Qualys 2007). To find out the relevance of
this vulnerability on today’s software, we surveyed the top
ten most active projects in sourceforge.net (SourceForge.net
2007) in September 2007. Six projects use C or C++ as one
of the languages, three use PHP and one uses Java. Among
the six C/C++ projects, four have at least one buffer overflow
vulnerability reported. These projects are pidgin, gimp-print,
licq and python. Ghostscript, written in C, contributes to a
buffer overflow vulnerability in gv, but it does not have a
direct vulnerability. The only C++ based project not to have
a buffer overflow vulnerability is Crystal Space 3D SDK.

Research efforts to mitigate buffer overflow attacks pri-
marily focus on the detection of buffer overflow in source
code. The programmer, after generating a list of potential
buffer overflows using one of these detection tools, is in
charge of making the changes in the source code. This ap-
proach has two problems. First, the coverage of the gener-
ated list is limited to the accuracy of the detection algorithm.
There may be a lot of false positives or false negatives. Sec-
ond, the programmers do not have a guideline how to change
the source code without any side effects so that the buffer
overflow is removed but no new vulnerability is introduced.

As a result, despite the effort of the software companies,
commercial software are still not free from this vulnerability.

Buffer overflow attacks can be launched on the stack or
the heap. The simplest attack is stack smashing (Aleph One
1996), where the attacker overwrites the return address on
the stack and redirects the program counter to point to his
malicious script. This is done by passing a long input buffer
to a buffer handling routine. In C, the string routines do not
check the buffer size while copying a source buffer to a des-
tination buffer; this creates an opportunity to launch a buffer
overflow attack. A very famous exploit of this vulnerability
is the Morris worm, which used a vulnerability in the fingerd
daemon (Eichin and Rochlis 1989).

Heap based buffer overflow attacks are more sophisti-
cated (Conover 1999). This attack is launched on the dy-
namically allocated memory in the heap. For example, an
attacker can overflow a dynamically allocated temporary file
name pointer to make it point to a separate string, e.g. the
command line argument argv[1]. The attacker can then sup-
ply important configuration files like /root/.rhosts as the
command line argument and corrupt the file, eventually gain-
ing access to the system.

A language with garbage collection and bounds checking
like Java and Smalltalk, does not have this vulnerability.

3. Buffer Overflow Detection and Prevention
The buffer overflow detection algorithms rely on static or
dynamic analysis of programs. Static analysis tools range
from very simple lexical analyzer (Viega et al. 2000) to
tools performing integer analysis to approximate the pointer
arithmetic in the C source code (Wagner et al. 2000; Dor
et al. 2001). These algorithms often generate too many false
positives. For example, one lexical analyzer based buffer
overflow detection scheme checks each method and rates
it as vulnerable or not vulnerable based on whether they
use vulnerable buffer manipulation routines (e.g. strcpy and
strcat). A program is not vulnerable to buffer overflow
attacks only because it is using an unsafe string routine;
hence this approach returns many false positives. On the
other hand, the integer analysis routines often analyze the
program flow imprecisely because they make impractical
assumptions (e.g. assuming C strings are only manipulated
by strcpy and strcat functions) to make their algorithm
efficient. In some cases, the programmer has to annotate the
program (Dor et al. 2001), which is difficult.

Dynamic checking algorithms monitor memory access
at runtime by keeping state information for each memory
byte (Haugh and Bishop 2003; Hastings and Joyce 1992).
These algorithms have a data storage overhead. Sometimes,
the detection algorithm does not keep the state of the entire
memory; it only keeps the critical information related to a
function call in a private data area and checks this area when
the function returns (Libenzi 2004). However, the private
data area has to be implemented. Another technique that

requires extra implementation uses markers to denote data
endpoint in stack and heap (Cowan et al. 1998, 2003). The
program dynamically examines the markers for corruption.
A corrupt marker indicates an overflow in a buffer resident
before the marker in memory.

The best way to prevent buffer overflow it to use a pro-
gramming language that does not have the vulnerability;
but this is often not the most feasible option. Another op-
tion is to rewrite the string I/O library to include support
for array bounds checking. For example, string copy and
concatenation functions strcpy and strcat are vulnerable
to buffer overflow attacks. Safe alternatives of these func-
tions are available as a library; e.g. strncpy and strncat, or
strlcpy and strlcat (Miller and de Raadt 1999) functions
do not allow overwriting beyond the buffer bounds. Another
option is to allow overwriting beyond the buffer bounds by
dynamically resizing the destination string to hold the longer
source string, e.g. the SafeStr (Messier and Viega) library.
Also, C++ std::string (std::string) library provides safe I/O
by dynamically resizing strings.

Special implementation of stacks can also prevent buffer
overflow. Making the stack non-executable prevents buffer
overflow (OpenWall Project), but some applications might
need the execution feature of the stack. Another option is to
split the control and data stack (Xu et al. 2002), but it is hard
to calculate the function return address in this case.

4. Program Transformation to Remove
Buffer Overflow

The buffer overflow attack prevention techniques are appli-
cable to a software system in the design phase. It is not easy
to apply these prevention techniques to transform a legacy
program written in C to a program that is not vulnerable.
We are describing a program transformation approach to re-
move buffer overflow vulnerability in existing C programs.
Our program transformation follows the ‘search and replace’
approach; it searches for all the unsafe functions that may
cause buffer overflow and replaces them with a safer alter-
native. We have written a Perl script to search and replace
strcat and strcpy functions in C programs. We applied this
simple transformation in three C programs. The transformed
programs are not vulnerable to known buffer overflow at-
tacks.

It is important to understand the significance of our con-
tribution. Our program transformation script only replaces
strcat and strcpy functions; other replacements are re-
quired to completely remove buffer overflow vulnerability.
Developing a commercial quality tool is not our goal; how-
ever, developing such a tool would not be very difficult. We
want to show that a security solution to remove buffer over-
flow vulnerabilities can be added on to an existing system
by a program transformation.

Many of the security solutions are described as secu-
rity patterns. Security patterns document best practices and

proven solutions for security problems. The program trans-
formation to remove buffer overflow vulnerability follows
the Safe Data Buffer security pattern. This section starts with
a description of the security pattern. Then we describe the
desirable properties of the replacement functions. This is fol-
lowed by the details of the program transformation script. Fi-
nally, we describe the effect of the program transformation.

4.1 Safe Data Buffer Pattern
The Safe Data Buffer (Hafiz 2005) pattern provides a guide-
line to implement a safe data structure to prevent buffer over-
flow vulnerability in languages like C. C strings are NUL-
terminated. A string function like strcpy blindly copies all
characters from the source string into the destination until
it finds a NUL. This is vulnerable to buffer overflow at-
tacks like ‘smashing the stack’ or ‘overrun screw’ (Aleph
One 1996). The safe data buffer pattern suggests that every
data buffer should have length information associated with
it and the library should use this length information when it
manipulates the buffer. Table 1 summarises the pattern.

Table 1. Safe Data Buffer Pattern

Context
You are designing a system in a programming language that does not
have built-in array bounds checking.

Problem
Buffer overflow occurs when a process attempts to store data beyond
the boundary of a fixed-length buffer. The problem is caused by bad
programming practice. If every buffer handling routine checked allo-
cated memory and operated within that memory bounds, buffer over-
flow would not occur. In practice, the buffer handling routines do not
handle these tasks. An attacker exploiting a buffer overflow can execute
arbitrary code and take complete control of the operating system. How
can you design buffers that do not have this vulnerability?

Forces
• Programming languages that do not check for buffer bounds are

used in practice.

• Programmers can prevent buffer overflow by checking buffer
bounds every time they are using a buffer handling routine; instead
they call the library functions without checking any preconditions.

• Buffer handling library functions do not check for buffer bounds.

Solution
Keep length information and allocated memory information with the
buffer. In all buffer handling functions, check for length and available
memory before updating the data buffer.

Length and memory information can be kept by creat-
ing a separate data structure. qmail, written in C, follows
this approach (Hafiz 2005). qmail uses its own string library.
Strings are not NUL-terminated. Instead, they are encapsu-
lated in a structure named stralloc. This data structure keeps
the length information of the string buffer. The len field
keeps the length of the buffer in bytes and the a filed keeps
the count of allocated bytes in the string.

typedef struct stralloc {
char *s;
unsigned int len;
unsigned int a;
}

All string-manipulation functions check if the input data fits
the buffer before attempting to update the buffer. Another
mail transfer agent, sendmail X, has a data structure named
sm str S, that keeps length information (Aßmann 2004).

Creating a new data structure is not an essential part of
the solution, changing the buffer handling functions is. The
changed functions should check for length and available
memory before updating a data buffer. For example, qmail
author wrote the data buffer handling functions in order
to incorporate the stralloc data structure. The popular C
function strcpy has the following signature.

char* strcpy (char *destination,
const char *source);

In qmail, this function is replaced by the stralloc copy
function that has the following signature.

int stralloc_copy(stralloc *destination,
stralloc *source);

String functions can be rewritten without introducing a
new data structure. For example, the strcpy function is re-
placed by the strlcpy function (Miller and de Raadt 1999).

size_t strlcpy (char *destination,
const char *source, size_t size);

The new function has one more parameter. The size param-
eter takes the size of the destination and does not allow writ-
ing beyond the specified length. It is passively introducing
length information; it does not require a new data structure.

In fact, some alternative safe libraries do not require an
explicit length argument. The libmib library defines an alter-
native for the strcpy function. The astrcpy function does
not require the length argument (Forrest J. Cavalier III).

char* astrcpy (char **destination_address,
chonst char *source);

This function takes the address of the destination and calcu-
lates the length information.

The strcpy and strcat functions are not the only string
handling routines that are vulnerable. The string input func-
tions like gets and sscanf , and the formatted string print-
ing functions like sprintf and vsprintf are also vulnerable.
There are safe replacements for these functions. For exam-
ple, the sprintf function has the following signature.

int sprintf (char *str,
const char *format, ...);

This function might take additional arguments based on the
format argument. A safe replacement is the asprintf func-
tion defined in the libmib library.

int asprintf (char **str_address,
const char *format, ...);

The vulnerability introduced by the strcpy and strcat
functions has been known for a long time. Our survey of
the top ten most active projects shows that at least three of
the six C/C++ projects (Crystal Space 3D SDK, gimp-print,
and licq) used strcpy and strcat functions initially, but
changed to safer C/C++ string libraries when buffer overflow
attacks were reported. This replacement was done by manual
code inspection. Our program transformation automatically
replaces the string functions.

4.2 Choice of the Library
The library that will be used as the substitutes should have
functions with clear semantics. The replacement functions
should have similar signatures or at least they should be
as close as possible. The new library should be easy to
adopt and it should add minimal computational overhead.
The library should be introduced with minimal program
transformation. Most importantly, the library should be safe,
i.e. it should not introduce any new vulnerabilities.

The safe library options have their own trade offs. For
example, the strncpy and strncat functions have compli-
cated semantics, making them difficult to use. The strcpy
function NUL-terminates the string. It is a common miscon-
ception that its safe alternative strncpy does the same. The
strncpy function NUL-terminates only if the length of the
source string is less than the size parameter. The safest way
to use strncpy is to NUL-terminate by explicit assignment
after every function call. But programmers often rely on the
functions’ capability. In large projects, it might happen that
some strings are NUL-terminated after the use of strncpy
function, while others are not. This causes a maintenance
nightmare.

The strncat function has another problem. A common
mistake that programmers make while using the strncat
functions is that they use an incorrect size parameter. strncat
guarantees the NUL-termination, but NUL byte should not
be counted as part of the size parameter. Again, the size pa-
rameter reflects the amount of space available, instead of
the size of the destination string. The programmers have
to calculate this value before using the function, which is
error-prone. It recreates the original problem that strcpy
and strcat had. If used correctly, strcpy and strcat do not
have buffer overflow vulnerability. But programmers make
mistaken assumptions about the size of the source and the
destination buffer. The safe library option should not rely
on the programmers’ calculation of string size; it should not
overflow a buffer when the programmers make mistakes.

qmail provides a safe string copy and concatenation func-
tion. These functions take the same number of parameters
as strcpy and strcat, but these parameters have a different
type, the stralloc data structure of qmail. stralloc copy and
stralloc cat are easy to use but the programmer has to de-

clare and allocate the buffer data structure before using them.
All the instances where the buffer is used would now have
to use the stralloc data structure. Additionally, the library
functions to initialize the buffer, e.g. malloc, should be re-
placed with the stralloc ready function. This means that
the library is not program transformation friendly.

A library does not have to ensure that the related pro-
gram transformation is easy. However, if there are several
library options, the one that involves an easier program
transformation should be chosen for efficiency. The strlcpy
and strlcat functions retain the original parameters and
add one length parameter. Both strlcpy and strlcat take
the full size of the destination string as the length param-
eter, which is easy to calculate. Both the functions have
clear semantics and guarantee that the destination string
will be NUL-terminated. More importantly, operating sys-
tems have libraries that implement these functions. For ex-
ample, the glib 2.0 library implements these functions as
g strlcat and g strlcpy. These functions have the same
semantics as strlcpy and strlcat. The glib library also pro-
vides safe implementation of the string print functions, e.g.
g printf , g fprintf , g sprintf , g vprintf , g vfprintf ,
g vsprintf , g vasprintf , etc.

The libmib library is another suitable option. It includes
the astrcpy and astrcat functions. The library also pro-
vides safe alternatives for string print functions, avsprintf ,
asprintf , afgets, etc.

4.3 Details of the Program Transformation Script
Our proof-of-concept Perl implementation reads the source
code, searches for patterns to identify the strcpy and strcat
functions, and replaces them with the functions provided in
the glib 2.0 library. The patterns are not exhaustive. There
are other patterns that we did not implement in our Perl
script. Furthermore, a commercial quality tool should re-
place other unsafe functions with safe alternatives.

Our tool reads the source code line by line. When it finds
the text strcat or strcpy, it identifies the source and destina-
tion parameters by pattern matching and then replaces them
with the g strlcat or g strlcpy library. The patterns are de-
scribed in table 2.

The replacement patterns in table 2 use both the sizeof
and the malloc usable size function. The sizeof function
is only good for determining the size of a buffer that is
statically allocated. For the dynamically allocated variables,
the sizeof function returns the size of the pointer vari-
able pointing to the first memory address. For these vari-
ables, the malloc usable size function returns the size. The
malloc usable size function, on the other hand cannot be
used with statically allocated buffers; it produces a segmen-
tation fault when done so. Hence, the Perl script has to iden-
tify which variables are statically allocated and which are
dynamically allocated.

We have a dirty fix in our script. The script identifies all
the dynamically allocated variables within each functions

Pattern Name Parameters Search Pattern Replacement Pattern
1. Function with two Two parameters each strcpy (var1, var2); g strlcpy (var1, var2, sizeof(var1));

variables of which are variables
2. Function with The source is a string literal, strcpy (var1, "C Str"); g strlcpy (var1, "C str", sizeof(var1));

string the destination is a variable
3. Function with Any of the source or destination strcpy (*var1, "C Str"); g strlcpy (*var1, "C str",

pointer parameter is a pointer malloc usable size(*var1));

4. Function with Any of the source or destination strcpy (var1[index], var2); g strlcpy (var1[index], var2, sizeof(var1));
array parameter is an array

5. Function with Any of the source or destination strcpy (struct1.var1, var2); g strlcpy (struct1.var1, var2,
structure parameter is a member variable sizeof(struct1.var1));

in a structure
6. Function with Any of the parameters have strcpy ((char *) var1, var2); g strlcpy ((char *) var1, var2,

type cast a type cast malloc usable size((char *) var1));

7. Function with Any of the parameters have strcpy (*var1 + intvalue, var2); g strlcpy (*var1 + intvalue, var2,
pointer arithmetic pointer arithmetic with integer malloc usable size(*var1) - intvalue);

8. Function with Any of the parameters strcpy (&var1, var2); g strlcpy (&var1, var2,
memory address contain a memory address malloc usable size(&var1));

Table 2. Patterns for strcat and strcpy functions

and keeps them in an array. In all the projects where we
have applied the program transformation, the curly braces
that start and end a function are in a separate line with no
indentation. We have looked for this pattern. Whenever we
encounter an end curly brace (‘}’) as a first character in a
line, we clear the variable list (i.e. the array) because we have
reached the end marker of the function. Then we start to add
newly encountered variables in the empty list, doing so until
we reach another curly brace marking a function endpoint.
This will not work in a project that uses no indentation and
all the curly braces, including the ones that denote the start
and end of a loop, are the first character in a line. Such an
indentation scheme is very unlikely; but even in that case, a
sophisticated tool can be developed to identify the function
boundary.

To identify the dynamically allocated variables, we search
for the ‘assignment statement followed by an alloc keyword’
pattern. These variables are stored in the list. During the
search and replace task, the first variable in the strcpy or
strcat function is identified and matched with the entries
in the list. If it is a match, the size of the variable is calcu-
lated with the malloc usable size function; otherwise the
sizeof function is used.

When the new functions are included, the corresponding
header files have to be loaded at compile time and the li-
brary has to be loaded at link time. In our case, we did not
include the glib/gstrfuncs.h file in all the C source files.
The quickest fix is to include the library during link time.
Our script modifies the Makefiles and the config.status
file of the project. In each of these files, we look for the
pattern ‘gcc’ as a single word and replace it with ‘gcc
p̀kg-config --libs glib-2.0`’. This ensures that the
library is loaded during link time. Instead of updating all the
make files, it is possible to parse the make hierarchy and in-
telligently update. However, our solution is the simplest and
the most perfect for the scenario.

String search and replace provides a quick solution, but
a commercial quality tool can be developed for this pro-

gram transformation by utilizing the parse trees and abstract
syntax trees of the C program, or by parsing the make files
and configuration files. Our goal is to show that security so-
lutions can be added as program transformations, and our
crude transformation is sufficient to make the point.

4.4 Effect of Program Transformation
The destination buffer is overflown when it is smaller than
the source buffer. The functions that we used as replacement
prohibits this by truncating the source buffer when it is larger
than the destination buffer. This makes the program behave
in a different manner because the data is corrupted. But
this is not a problem, because the buffer overflow attacks
are only exploited by malicious users. When the attackers
produce the corrupt truncated data, they will get a different
behavior from the program. Many buffer overflow exploits
ask a program to open a malformed file. In this case, the
program will get a truncated version of the file name or some
file parameter and will fail to recognize it, thereby stating
that it is unable to open the file. Again, consider a mail
transfer agent program receiving a mail with a long header or
body that corrupts the buffer. The transformed program will
truncate the data and produce garbage mail that can later be
removed by a user’s spam filter.

Buffer overflow attacks are attempted by people with
malicious intent. The solution is to give them malformed
data response and continue to run the service. The resources
employed by the attacker is wasted, and he is also not getting
the intended service. The good users are not punished with
bad data because they do not misbehave. This punishment
orientation is how human society retains order, and the same
lesson can be adopted here to introduce protection against
buffer overflow.

5. Case Study
We have applied the program transformation in three open
source C programs: a pdf/ps file viewer (gv), a zip library
(zziplib) and the implementation of the kerberos protocol

(kerberos). These programs are selected because buffer over-
flow exploits have been reported in the programs recently,
and the exploit codes are available.

The program transformation impacts three types of files.
First, the C files are searched for instances of strcpy and
strcat, and are replaced with g strlcat and g strlcpy. Sec-
ond, the Makefiles are searched for the word ‘gcc’ and are
replaced with ‘gcc p̀kg-config --libs glib-2.0`’.
Finally, the config.status file is searched for the word
‘gcc’, and replaced with the same pattern.

5.1 Gnu Viewer
gv is used to view and navigate through postscript and pdf
documents on an X display. gv provides a graphical user
interface for the ghostscript interpreter. It is available for
Unix and Linux operating systems. We examined version
3.6.2 of gv. It contains 46 C files with 27000 lines of C code.

Renaud Lifchitz reported a stack buffer overflow vulner-
ability on November 2006 (Bugtraq ID 20978). gv versions
3.5.8, 3.6, 3.6.1 and 3.6.2 are vulnerable. An attacker con-
vinces a person to use gv to view a malformed ps file; the
result is a segmentation fault. The error is in the ps gettext
function defined in the ps.c file. Line 1382 of the file con-
tains a strcpy call which causes the buffer overflow.

Our Perl script replaces the unsafe strcpy and strcat
functions. There are 37 instances of strcpy and 51 instances
of strcat in the source code. The Perl script replaces 86 of
these 88 instances. Our tool is not sophisticated enough to
identify the parameter variables in the two remaining cases.
The first case is easy to fix,

strcpy(tmp,&(label[progress]));

Our Perl script misses it because the second variable is
enclosed by a parentheses, which we have not specified
in our rule. For the second case, the second variable is
an expression which is complex to describe with regular
expression.

strcat(msg, count == 0 ?
", expecting ‘" : " or ‘");

In both these cases, we made the changes by hand and
compiled the resulting program.

4 configuration file changes are made. For example line
553 of the config.status file,

s,@ac_ct_CC@,|#_!!_#|gcc,g

is replaced with

s,@ac_ct_CC@,|#_!!_#|gcc
‘pkg-config --libs glib-2.0‘,g

The resultant program compiles without any errors, and
shows the same behavior. When gv tries to open the mal-
formed postscript file, there is no segmentation fault.

The source code has other transformation opportunities.
We did not change these because the buffer overflow protec-
tion only requires the change on the strcat and strcpy files.

There are 7 instances of strncpy, 8 instances of strncat, 47
instances of different flavors of scanf , and 211 instances of
different types of printf commands that should be replaced,
to make the program more robust.

5.2 zziplib
zziplib is a lightweight zip library to extract data from files
archived in a single zip file. The current version of zziplib
library is version 0.13.49, which was produced in response
to a buffer overflow vulnerability reported in version 0.13.48
in March 2007 (Bugtraq ID 23013). We have transformed
version 0.13.47 of the zziplib program. This version has 7346
lines of C code in 33 C files.

The stack based buffer overflow vulnerability occurs be-
cause zziplib fails to properly bounds-check user-supplied
input before copying it to an insufficiently sized buffer.
The zzip/file.c file defines the zzip open shared io func-
tion that takes a file name parameter named filename and
copies it to a buffer basename.

char basename[PATH_MAX];
char* p;
strcpy (basename, filename);

[Lines 726-728 from zzip/file.c file]
When an attacker makes the user open a zip file with

long filename, the program crashes. Exploiting the issue
may allow attackers to execute arbitrary machine code in the
context of the application using the library. Even a failed
exploit attempt would cause a denial of service scenario,
because the program crashes.

The Perl script changes all the 5 instances of strcpy and
strcat in the source code. Also, the Makefile is changed in
15 places to include the library information. The transformed
program successfully compiles and displays the same behav-
ior. It does not crash when a long file name is presented.
Rather the file name is truncated when the buffer is copied.
The program fails to open the file but it does not crash.

zziplib is chosen for two reasons. First, it is small; hence
all the changes can be manually inspected for correctness.
Second, the subsequent version of zziplib is available that
removes the buffer overflow vulnerability. Version 0.13.49
replaces the previous code segment with,

char basename[PATH_MAX];
char* p;
int filename_len = strlen (filename);
if (filename_len >= PATH_MAX)

{ errno = ENAMETOOLONG; return 0; }
memcpy (basename, filename, filename_len+1);

[Lines 741-745 from zzip/file.c file]
Our version just replaces line 728 from previous version with
the g strlcpy alternative and achieves the same effect.

Other unsafe functions are not replaced. There are 121 in-
stances of various flavors of printf functions and 1 instance

Pattern Description Search Pattern Replacement Pattern
1. Function with expression - Evaluates an strcat (var1, (bool expression? g strlcat (var1, (bool expression?

expression to find the parameter. var2 a : var2 b)); var2 a : var2 b), sizeof (var1));

2. Function with pointer arithmetic - Pointer strcat (var1 + varinc, var2); g strlcat (var1 + varinc, var2,
arithmetic with variables sizeof(var1) - varinc);

3. Function with complex array indexes - strcat (var1, var2[index + 2]); g strlcat (var1, var2[index + 2],
Array indexes are complex sizeof(var1));

4. Function with non-standard typecast - strcat (var1, (varcast *) var2); g strlcat (var1, (varcast*) var2,
Parameters with non-standard type cast sizeof(var1));

5. Function with a function parameter - strcat (var1, fn returning var2(...)); g strlcat (var1, fn returning var2(),
Parameter is the return value of a function sizeof (var1));

6. Function with special operators - strcat (var1, ++var2); g strlcat (var1, ++var2,
Special operators sizeof(var1));

7. Functions used in assignment - The strcat function returns the destination buffer while g strlcat returns the size of the destination buffer
The return value is assigned to a variable after concatenation. They cannot be substituted in an assignment statement.

8. Function not ending in one line - The strcat functions may be written in multiple lines. Since our script
Functions written in multiple lines only reads one line every time, this cannot be detected.

Table 3. Patterns that were not covered for strcat and strcpy functions

of strncpy function. Replacing them would make the pro-
gram more robust.

5.3 Kerberos
Kerberos is an implementation of the network authentica-
tion protocol named Kerberos (Neuman and Ts’o 1994).
The protocol is designed to provide strong authentication
for client/server applications by using secret key cryptog-
raphy. A number of recent buffer overflow vulnerabilities
have been reported for different versions of Kerberos (Bug-
traq ID 23285; Bugtraq ID 24653). The kadmind server
stack buffer overflow vulnerability was reported in April
2007 (Bugtraq ID 23285). An attacker can exploit this issue
to execute arbitrary code with administrative privileges. A
successful attack can result in the complete compromise of
the application. Failed attempts results in denial-of-service
conditions. Besides, all kadmind servers run on the mas-
ter Kerberos server. Since the master server holds the KDC
principal and policy database, an attack may not only com-
promise the affected computer, but could also compromise
multiple hosts that use the server for authentication. Ker-
beros 5 kadmind 1.6 and prior versions are vulnerable.

We have transformed kerberos 5 kadmind 1.5.1. This
contains 1045 C programs with 369,442 lines of code,
129 Makefiles containing 102,018 lines of code, and 11
config.status files containing 9718 lines of code. Our Perl
script converts 470 strcat and strcpy instances. It also re-
places 110 instances of the word ‘gcc’ in the Makefiles and 5
instances of the same word in the config.status files. 35 in-
stances of strcpy and 3 instances of strcat are not modified.
These instances have complex patterns for the parameters.
Table 3 lists these patterns. It is not difficult to develop a tool
that also finds these patterns, but this is beyond our scope.

The compiled version shows the same functionality as
the original version. However, we could not test whether
the new version does not have the buffer overflow vulner-
ability. The buffer overflow scenario could not be simulated
because of the lack of information about the exploit code.
In fact, the buffer overflow in this case is not because of

strcpy, but because of the vsprintf function. The buffer
overflow error reported is in the klog vsyslog function in
the lib/kadm5/logger.c file [Some irrelevant code portion
has been removed].

static int
klog_vsyslog(int priority, const

char *format, va_list arglist)
{

char outbuf[KRB5_KLOG_MAX_ERRMSG_SIZE];
char *syslogp;
strncpy(outbuf, ctime(&now) + 4, 15);
cp += 15;
syslogp = &outbuf[strlen(outbuf)];
vsprintf(syslogp, format, arglist);

The buffer overflow occurs because the arglist parameter
is not checked before it is used in vsprintf . Nevertheless,
we have chosen kerberos to apply our transformation to a
larger program and show that the program behavior does not
change.

There are 4487 instances of different type of printf func-
tions, 313 instances of strncpy functions and 155 instances
of strncat function instances in the source code that should
be removed to make the program safe from buffer overflow
vulnerabilities.

6. Improved Tool for Program
Transformation

We have shown a proof-of-concept implementation for in-
troducing buffer overflow protection in C programs. A com-
mercial quality tool for the program transformation can be
developed using the following guidelines.

Our implementation only replaces the strcat and strcpy
functions. It should be extended to replace the unsafe string
input and print functions. We have already discussed the
problems associated with the strncat and strncpy func-
tions. These should also be replaced. In this case, the size
parameter has to be calculated. The simplest way to do it is
to ignore the size parameter in the strncpy signature, and

calculate the size in the g strlcpy function by applying the
malloc usable size or the sizeof function over the desti-
nation string parameter.

Our implementation does not match all the parameter pat-
terns for strcat and strcpy functions. Our lexical analysis
based approach should be replaced with an improved ap-
proach that uses the parse tree or the abstract syntax tree.
An approach in this direction is the Gemini tool (Dahn and
Mancoridis 2003). It uses TXL to transform all the stack
allocated buffers in a C program to heap allocated buffers,
because heap allocated buffers are less vulnerable against
buffer overflow attacks. TXL has a grammar for C and it can
be used for more efficient source code transformation (Cordy
2006) than our approach.

Our program transformation is only dependent on replac-
ing the library. Bad function calls are not the only candi-
dates causing buffer overflow. In many cases pointers are di-
rectly manipulated in C programs, and bad pointer arithmetic
can lead to a buffer overflow vulnerability. Again, Gem-
ini (Dahn and Mancoridis 2003) tries to solve it by allocating
buffers on the heap. However, transforming the stack based
buffers to heap based buffers does not entirely remove the
buffer overflow vulnerability. A combination of the two ap-
proaches, replacing the functions and relocating the buffers,
would be more effective.

Our understanding is that programmers are more care-
ful when they are manipulating buffers directly. Bad as-
sumptions about the library functions are the primary cause
of buffer overflow vulnerability. Nevertheless, a more de-
tailed program transformation technique should analyze the
pointers and add necessary constraints at the program points
where bad pointer arithmetic can happen.

7. Other Program Transformations for
Security

Eliminating buffer flow vulnerability is not the only security
solution that can be automated by program transformations.
In fact, most security solutions seem like they could be au-
tomated. For example, the security solution described in the
single access point pattern suggests that the access points in
a system should be minimized so that the system can not
be attacked from multiple entry points (Yoder and Barcalow
1997). This can be done by making a Façade (Gamma et al.
1995) in the object-oriented world, or by introducing a gate-
keeper component that also has the same API as the orig-
inal program in C. The gatekeeper should run with mini-
mum privileges and delegate the incoming requests only. For
example, the TIS firewall toolkit had an SMTP service that
acted as the wrapper of a sendmail program. The toolkit in-
tercepts requests from the outside world and then forwards it
to the sendmail program. The SMTP service runs as an un-
privileged user; hence outside attackers cannot compromise
the whole system by compromising the gatekeeper process.

Different security solutions are applicable at different lev-
els of a system. For example, one way to secure a monolithic
process is to partition it into multiple processes. Compart-
mentalization (Viega and McGraw 2002) limits the exploits
of an attacker to a single compromised process. A mono-
lithic process is compartmentalized by describing the parti-
tions and slicing the program based on these descriptions.
On the other hand, the buffer overflow problem is solved by
removing the vulnerable function calls that create a buffer
overflow. This is done by searching for the vulnerable func-
tion calls in a program and replacing them with a secure al-
ternative. These two approaches work at different granulari-
ties of the system; partitioning works on the whole program
and needs a description of how the system is to be parti-
tioned, while eliminating buffer overflow operates on each
part of the program individually.

There are some approaches to partition a system for priv-
ilege separation (Kilpatrick 2003; Brumley and Song 2004),
but these approaches only split the program into a privileged
and unprivleged partition instead of partitioning into multi-
ple processes based on the task distribution. Compartmen-
talization has to consider how the tasks are distributed be-
tween the partitioned processes (Veryard and Ward 2001),
and apply the least privilege principle (Saltzer and Schroeder
1975). The program transformation has to take these issues
into account, making it a hard problem.

Sometimes a program transformation is not enough;
changes have to be made in a program’s runtime environ-
ment. Suppose, a software engineer wants to run an existing
program inside a chroot jail (Friedl 2002) to limit the ex-
ploits of an attacker. This is done by setting the jail with
a chroot() (Linux Man Pages) call passing a pathname as
parameter. After the call, the pathname becomes the root
directory (‘/’) for the process. Thus, files outside the speci-
fied directory structure are considered ‘safe’ from the jailed
process. A number of things have to be considered prior to
the setup of a chroot jail. First, a replica of the file system
is created inside the chroot directory. This is typically done
by creating the /etc, /usr, /dev and the /tmp directory.
Then, all the required libraries and resources of the jailed
process have to be copied inside the jail directory with exact
file system hierarchy. Finally, the process inside the jail is
run as a user with limited privileges because root privilege
enables an attacker to break the jail (Friedl 2002). It is pos-
sible to automate these steps. The program transformation
introduces the chroot() call only; but the task of setting up
the necessary environment should also be automated.

Even if the security solutions can be described as program
transformations, applying one solution does not guarantee
security. A system should have defense in depth (Viega and
McGraw 2002), i.e. it should have multiple layers of secu-
rity tactics instead of a single security strategy. An example
is the architecture of qmail, a secure MTA. At the process
level, qmail is compartmentalized into modules which limits

the exploits of an attacker after a security break-in. Com-
partmentalization also makes each module simpler; a per-
son can inspect the modules for correctness. Second, qmail
communicates with the outside world with a few chosen pro-
cesses that run as a user with limited privileges. This follows
the single access point pattern. Third, the low-level coding
patterns in qmail eliminate important classes of errors such
as buffer overflows. Applying one security solution is not
enough, multiple solutions have to be applied in an order.

The order in which the program transformations are ap-
plied is probably important. Many sequences might not
make sense at all. Research on security patterns might be
useful in identifying an appropriate order. Security patterns
are organized as a pattern language (Hafiz et al. 2007). The
pattern language provides a guideline about the order in
which the patterns, i.e. the security solutions, should be ap-
plied. This guideline can be used to determine the sequence
of program transformations.

8. Conclusion
This paper shows that a particular kind of security flaw,
buffer overflow, can be eliminated by program transforma-
tion. There are probably many more security flaws that can
be eliminated in this way. This is important, because new
security threats are continuously arising, and old software
needs to be modified to deal with these threats. As new se-
curity threats emerge, new program transformations should
be made available to make software fit for the changed real-
ity.

Acknowledgments
The authors would like to thank Paul Adamczyk, Jeffrey
Overbey, Maurice Rabb, Nicholas Chen and Farhana Hafiz
for providing valuable feedback. Also, the authors would
like to thank the people from the mailing lists of all the open
source projects listed here for providing information about
the projects.

References
Aleph One. Smashing the stack for fun and profit. Phrack Maga-

zine, 7(49):File 14, 1996.

J. P. Anderson. Computer security technology planning study.
Technical report, ESD-TR-73-51, October 1972.

Claus Aßmann. Sendmail X: Requirements, architecture, func-
tional specification, implementation, and performance.
http://www.sendmail.org/ ca/email/sm-X/design

-2004-09-29/main/main.html, 2004.

David Brumley and Dawn Xiaodong Song. Privtrans: Automati-
cally partitioning programs for privilege separation. In USENIX
Security Symposium, pages 57–72. USENIX, 2004.

Bugtraq ID 20978. GNU gv stack buffer overflow vulnerability.
http://www.securityfocus.com/bid/20978.

Bugtraq ID 23013. zzipLib zzip open shared io stack buffer over-
flow vulnerability.
http://www.securityfocus.com/bid/23013.

Bugtraq ID 23285. MIT kerberos 5 kadmind server stack buffer
overflow vulnerability.
http://www.securityfocus.com/bid/23285/.

Bugtraq ID 24653. MIT kerberos 5 kadmind server re-
name principal 2 svc function stack buffer overflow vulnerabil-
ity.
http://www.securityfocus.com/bid/24653.

Matt Conover. w00w00 on heap overflows.
http://www.w00w00.org/files/articles/heaptut.txt,
January 1999.

James R. Cordy. Source transformation, analysis and generation
in TXL. In John Hatcliff and Frank Tip, editors, PEPM, pages
1–11. ACM, 2006. ISBN 1-59593-196-1.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang,
and Heather Hinton. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In USENIX, editor,
Seventh USENIX Security Symposium proceedings: conference
proceedings: San Antonio, Texas, January 26–29, 1998, pages
??–??, pub-USENIX:adr, 1998. USENIX. ISBN 1-880446-92-
8.

Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle.
PointGuardTM: Protecting pointers from buffer overflow vulner-
abilities. In Proceedings of the 12th USENIX Security Sympo-
sium, pages 91–104. USENIX, August 2003.

Christopher Dahn and Spiros Mancoridis. Using program trans-
formation to secure c programs against buffer overflows. In
WCRE ’03: Proceedings of the 10th Working Conference on
Reverse Engineering, page 323, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-2027-8.

Nurit Dor, Michael Rodeh, and Shmuel Sagiv. Cleanness checking
of string manipulations in C programs via integer analysis. In
Patrick Cousot, editor, SAS, volume 2126 of Lecture Notes in
Computer Science, pages 194–212. Springer, 2001. ISBN 3-
540-42314-1.

Mark W. Eichin and Jon A. Rochlis. With microscope and tweez-
ers: An analysis of the Internet virus of November 1988. In IEEE
Security and Privacy, pages 326–343, 1989.

Forrest J. Cavalier III. Libmib allocated string functions.
http://www.mibsoftware.com/libmib/astring/.

Stephen Friedl. Go directly to jail. Linux Magazine, December
2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995.

Munawar Hafiz. Security architecture of Mail Transfer Agents.
Master’s thesis, University of Illinois at Urbana-Champaign,
2005.

Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson. Organiz-
ing security patterns. IEEE Software, 24(4):52–60, July/August
2007.

R. Hastings and B. Joyce. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter 1992 USENIX

Conference, pages 125–136, 1992.

Eric Haugh and Matt Bishop. Testing C programs for buffer
overflow vulnerabilities. In NDSS. The Internet Society, 2003.
ISBN 1-891562-16-9; 1-891562-15-0.

Douglas Kilpatrick. Privman: A library for partitioning appli-
cations. In USENIX Annual Technical Conference, FREENIX
Track, pages 273–284. USENIX, 2003. ISBN 1-931971-11-0.

Davide Libenzi. Guarded memory move
(GMM), February 10 2004. URL
http://citeseer.ist.psu.edu/637889.html;

http://www.xmailserver.org/gmm.pdf.

Linux Man Pages. chroot.
http://linux.die.net/man/2/chroot.

Matt Messier and John Viega. Safe c string library v1.0.3.
http://www.zork.org/safestr/safestr.html.

Todd C. Miller and Theo de Raadt. strlcpy and strlcat

— consistent, safe, string copy and concatenation. In
USENIX, editor, Usenix Annual Technical Conference. June
6–11, 1999. Monterey, California, USA, pages ??–??, pub-
USENIX:adr, 1999. USENIX. ISBN 1-880446-33-2. URL
http://www.openbsd.org/papers/strlcpy-paper.ps.

B. Clifford Neuman and Theodore Ts’o. Kerberos: An authenti-
cation service for computer networks. IEEE Communications
Magazine, 32(9):33–38, September 1994.

OpenWall Project. Linux kernel patch from the openwall project.
http://www.openwall.com/linux/.

Qualys. Top ten vulnerabilities.
http://www.qualys.com/research/rnd/top10, Septem-
ber 2007.

Jerome H. Saltzer and Michael D. Schroeder. The protection of
information in computer systems. procieee, 63(19):1278–1308,
September 1975.

SourceForge.net. Most active projects - all time.
http://sourceforge.net/top/mostactive.php, Septem-
ber 2007.

std::string. C++ std::string.
https://buildsecurityin.us-cert.gov/daisy/bsi/

articles/knowledge/coding/295.html.

Richard Veryard and Adrian Ward. Trusting components and
services.
http://cbdiforum.com/report summary.php3

?topic id=23&report=411&order=author&start rec=15,
2001.

John Viega and Gary McGraw. Building secure software: How to
avoid security problems the right way. Addison-Wesley Publish-
ing Co., Indianoplis, IN, 2002.

John Viega, J. T. Bloch, Y. Kohno, and Gary McGraw. ITS4: A
static vulnerability scanner for C and C++ code. In ACSAC,
page 257. IEEE Computer Society, 2000. ISBN 0-7695-0859-6.

David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander
Aiken. A first step towards automated detection of buffer over-
run vulnerabilities. In Proceedings of the Symposium on Net-
work and Distributed Systems Security (NDSS ’00), pages 3–17,
San Diego, CA, February 2000. Internet Society.

J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer. Architecture sup-
port for defending against buffer overflow attacks, 2002. URL
citeseer.ist.psu.edu/xu02architecture.html.

J. Yoder and J. Barcalow. Architectural patterns for enabling
application security. In Proceedings of the 4th Conference on
Patterns Language of Programming (PLoP’97)., 1997.

